Microbial Bioremediation of Petroleum Hydrocarbon: An Overview

  • Debajit Borah


Increased environmental toxicity due to extensive use of petroleum-based products gradually proves itself as a major issue of global concern. The release of petroleum products to the environment may cause catastrophic effect on aquatic habitats as well as barrens of fertile soil. Petroleum oil basically contains VOCs (volatile organic compounds), paraffin, gases (methane, ethane, propane, butane, etc.), metal ions (iron, nickel, copper, vanadium, etc.), etc., out of which VOCs may cause severe health problems such as lung, liver and kidney disease. Bioremediation is a process of treatment of contaminated environment with the help of living organisms to bring back to its natural state. Treatment of hydrocarbon-contaminated sites may be accomplished with the help of indigenous microorganisms with diverse groups present in the soil by augmenting with necessary nutrients or by adding external necessary microorganisms. Further, as the petroleum hydrocarbon pollutant creates a stressful environment for growth, the bacterial species having potential to tolerate stress conditions would be an added advantage.



The author acknowledges DBT Delcon facility for providing access to e-journals at the Centre for Biotechnology and Bioinformatics, Dibrugarh University, India.


  1. Abed RMM, Al-Sabahi J, Al-Maqrashi F, Al-Habsi A, Al-Hinai M (2014) Characterization of hydrocarbon-degrading bacteria isolated from oil-contaminated sediments in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments. Int Biodeterioration Biodegrad 89:58–66CrossRefGoogle Scholar
  2. Adebusoye SA, Amund OO, Ilori MO, Domeih DO, Okpuzor J (2008) Growth and biosurfactant synthesis by Nigerian hydrocarbon-degrading estuarine bacteria. Int J Tropical Biol 56:1603–1611Google Scholar
  3. Alvarez VM, Jurelevicius D, Marques JM, de Souza PM, de Araújo LV, Barros TG, Alves de Souza ROM, Freire DMG, Seldin L (2015) Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery. Colloids Surf B: Biointerfaces 136:14–21CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ameen F, Moslem M, Hadi S, Al-Sabri AE (2015) Biodegradation of diesel fuel hydrocarbons by mangrove fungi from Red Sea Coast of Saudi Arabia. Saudi J Biol Sci 23(2):211–218CrossRefPubMedPubMedCentralGoogle Scholar
  5. Anburajan L, Meena B, Raghavan RV, Shridhar D, Joseph TC, Vinithkumar NV, Dharani G, Dheenan PS, Kirubagaran AR (2015) Heterologous expression, purification, and phylogenetic analysis of oil-degrading biosurfactant biosynthesis genes from the marine sponge-associated Bacillus licheniformis NIOT-06. Bioprocess Biosyst Eng 38:1009–1018CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anozie O, Onwurah INE (2001) Toxic effects of Bonny light crude oil in rats after ingestion of contaminated diet. Nigerian J Biochem Mol Biol(Proceedings Supplement) 16(3):1035–1085Google Scholar
  7. Aresta M, Acquaviva MI, Baruzzi F, Lo Noce RM, Matarante A, Narracci M, Stabili L, Cavallo RA (2010) Isolation and characterization of polyphenols-degrading bacteria from olive-mill wastewaters polluted soil. World J Microbiol Biotechnol 26:639–647CrossRefGoogle Scholar
  8. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209PubMedPubMedCentralGoogle Scholar
  9. Atlas RM (1984) Petroleum microbiology. Macmillan Publishing Company, New YorkGoogle Scholar
  10. Atlas RM, Bartha R (1973) Simulated biodegradation of oil slicks using oleophilic fertilizers. Environ Sci Technol 7:538–541CrossRefPubMedGoogle Scholar
  11. Bach QD, Kim SJ, Choi SC, Oh YS (2005) Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents. J Microbiol 43:319–324PubMedPubMedCentralGoogle Scholar
  12. Barathi S, Vasudevan N (2001) Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum–contaminated soil. Environ Int 26:413–416PubMedPubMedCentralGoogle Scholar
  13. Baryshnikova LM, Grishchenkov VG, Arinbasarov MU, Shkidchenko AN, Boronin LM (2001) Biodegradation of oil products by individual degrading strains and their associations in liquid media. Appl Biochem Microbiol 37(5):463–468CrossRefGoogle Scholar
  14. Bastos AEB, Moon DH, Rossi A, Trevors JT, Tsai SM (2000) Salt tolerant phenol degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174:346–352CrossRefPubMedPubMedCentralGoogle Scholar
  15. Batista SB, Mounteer AH, Amorim FR, Totola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol 97:868–875CrossRefPubMedPubMedCentralGoogle Scholar
  16. Beeby A (1993) Applying ecology, 7th edn. Chapman and Hall Publishers, New YorkGoogle Scholar
  17. Belousova NI, Baryshnikova LM, Shkidchenko AN (2002) Selection of microorganisms capable of degrading petroleum and its products at low temperatures. Appl Biochem Microbiol 38(5):437–440CrossRefGoogle Scholar
  18. Bhattacharya D, Sarma PM, Krishnan S, Mishra S, Lal B (2002) Evaluation of genetic diversity among Pseudomonas citronellolis strains isolated from oily sludge-contaminated sites. Appl Environ Microbiol 69(3):1435–1441CrossRefGoogle Scholar
  19. Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Andersonc R, Fredricks HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH, Hinrichs KU (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc Natl Acad Sci U S A 103:3846–3851CrossRefPubMedPubMedCentralGoogle Scholar
  20. Blodgett WC (2001) Water–soluble mutagen production during the bioremediation of oil–contaminated soil. Florida Scientist 60(1):28–36Google Scholar
  21. Bodour AA, Wang JM, Brusseau ML, Maier RM (2003) Temporal change in culturable phenanthrene degraders in response to long-term exposure to phenanthrene in a soil column system. Environ Microbiol 5(10):888–895CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bognolo G (1998) Biosurfactants as emulsifying agents for hydrocarbons. Colloid Surf A Physicochem Eng Asp 152:41–52CrossRefGoogle Scholar
  23. Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high–molecular weight polycyclic aromatic hydrocarbons by defined fungal–bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019CrossRefPubMedPubMedCentralGoogle Scholar
  24. Briganti F, Pessione E, Giunta C, Scozzafava A (1997) Purification, biochemical properties and substrate specificity of a catechol 1, 2-dioxygenase from a phenol degrading Acinetobacter radioresistens. FEBS Lett 416:61–64CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bujang M, Ibrahim NA, EA R (2013) Biodegradation of oily wastewater by pure culture of Bacillus cereus. ARPN J Agric Biol Sci 8:108–115Google Scholar
  26. Butler CS, Mason JR (1997) Structure–function analysis of the bacterial aromatic ring hydroxylating dioxygenases. Adv Microb Physiol 38:47–84CrossRefPubMedPubMedCentralGoogle Scholar
  27. Cairns J, Buikema AL (1984) Restoration of habitats impacted by oil spills. Ann Arbor Science Publishers/Butterworth, BostonGoogle Scholar
  28. Campbell BJ, Cary SC (2001) Characterization of a novel Spirochete associated with the hydrothermal vent polychaete annelid, Alvinella pompejana. Appl Environ Microbiol 67:110–117CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cassidy DP, Hudak AJ (2001) Microorganism selection and biosurfactant production in a continuously and periodically operated bioslurry reactor. J Hazard Mater 84:253–264CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cébron A, Louvel B, Faure P, Lanord CF, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13(3):722–736CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Int Biodegradation 3:351e368Google Scholar
  32. Cha DK (2000) The effect of biosurfactants on the fate and transport of nonpolar organic contaminants in porous media. Environ Eng 20:1–17Google Scholar
  33. Chaillan F, Le Flèche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155(7):587–595CrossRefPubMedPubMedCentralGoogle Scholar
  34. Chang R (1998) Chemistry, 6th edn. McGraw–Hill Companies, Inc, New YorkGoogle Scholar
  35. Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48:717–724CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chang W, Um Y, Hoffman B, Holoman TRP (2005) Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnol Prog 21:682–688CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chattre S, Purohit H, Shanker R, Khanna P (1996) Bacterial consortia for crude oil spill remediation. Water Sci Technol 34:187–193CrossRefGoogle Scholar
  38. Christopher WK, Christopher LK (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70(3):1777–1785CrossRefGoogle Scholar
  39. Coral G, Karagoz S (2005) Isolation and characterization of phenanthrene degrading bacteria from a petroleum refinery soil. Ann Microbiol 55:255–259Google Scholar
  40. Crebelli R, Conti L, Crochi B, Carere A, Bertoli C, Giacomo ND (1995) The effect of fuel composition on the mutagenicity of diesel engine exhaust. Mutation Res 346:167–172CrossRefPubMedPubMedCentralGoogle Scholar
  41. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 1:1–13. CrossRefGoogle Scholar
  42. Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol 98:1339–1345CrossRefPubMedPubMedCentralGoogle Scholar
  43. Das SN, Swamy YV, Rao KK, Misra VN (2004) Pollution in urban environment. Proceedings National Seminar on Pollution in Urban Environment (NSPUIE 2004): Regional Research Laboratory, Bhubaneswar. ISBN:8177648578Google Scholar
  44. Das P, Mukherjee S, Sen R (2008) Genetic regulations of the biosynthesis of microbial surfactants: an overview. Biotechnol Genet Eng Rev 25(1):165–186CrossRefPubMedPubMedCentralGoogle Scholar
  45. Dongfeng Z, Weilin W, Yunbo Z, Qiyou L, Haibin Y, Chaocheng Z (2011) Study on isolation, identification of a petroleum hydrocarbon degrading bacterium Bacillus fusiformis sp. and influence of environmental factors on degradation efficiency. Chin Pet Process Pe Technol (Environ Prot) 13(4):74–82Google Scholar
  46. Dudášová H, Lukáčová L, Murínová L, Puškárová A, Pangallo D, Dercová K (2014) Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. J Basic Microbiol 54:253–260CrossRefPubMedPubMedCentralGoogle Scholar
  47. Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27CrossRefPubMedPubMedCentralGoogle Scholar
  48. Etkin DS (1998, October) Oil spills from production and exploration activities. Oil spill intelligence report, white paper series Vol. II, no. 8, Publication of Cutter Information CorpGoogle Scholar
  49. Fall RR, Brown JL, Schaeffer TL (1979) Enzyme recruitment allows the biodegradation of recalcitrant–branched hydrocarbons by Pseudomonas citronellolis. Appl Environ Microbiol 38:715–722PubMedPubMedCentralGoogle Scholar
  50. Filonov AE, Puntus IF, Karpov AV, Kosheleva IA, Kashparov KI, Slepenkin AV, Boronin AM (2004) Efficiency of naphthalene biodegradation by Pseudomonas putida G7 in soil. J Chem Technol Biotechnol 79:562–569CrossRefGoogle Scholar
  51. Fondi M, Rizzi E, Emiliani G, Orlandini V, Berna L, Papaleo MC, Perrin E, Maida I, Corti G, Bellis GD, Baldi F, Dijkshoorn L, Vaneechoutte M, Fani R (2013) The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3. Res Microbiol 164(5):439–449CrossRefPubMedPubMedCentralGoogle Scholar
  52. Fritsche W, Hofrichter M (2000) In: Klein J (ed) Aerobic degradation by microorganisms in environmental processes- soil decontamination. Wiley-VCH, WeinheimGoogle Scholar
  53. Ghurye GL, Vipulanandan C (1994) A practical approach to biosurfactant production using nonaseptic fermentation of mixed cultures. Biotechnol Bioeng 44:661–666CrossRefPubMedPubMedCentralGoogle Scholar
  54. Golyshin PN, Santos VAPMD, Kaiser O, Ferrer M, Sabirova YS, Lünsdorf H, Chernikova TN, Golyshina OV, Yakimov MM, Pühler A, Timmis KN (2003) Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J Biotechnol 106:215–220CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gregorio SD, Siracusa G, Becarelli S, Mariotti L, Gentini A, Lorenzi R (2016) Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes. Environ Sci Pollut Res 23:10587. CrossRefGoogle Scholar
  56. Guermouche MA, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 22(20):15332–16346CrossRefGoogle Scholar
  57. Hall AJ, Hugunin K, Deaville R, Law RJ, Allchin CR, Jepson PD (2006) The risk of infection from polychlorinated biphenyl exposure in the Harbor Porpoise (Phocoena phocoena): a case-control approach. Environ Health Perspect 114:704–711CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hamann C, Hegemann J, Hildebrandt A (1999) Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol Lett 173(1):255–263CrossRefPubMedPubMedCentralGoogle Scholar
  59. Hemmer MJ, Barron MG, Greene RM (2011) Comparative toxicity of eight oil dispersants, Louisiana sweet crude oil (LSC), and chemically dispersed LSC to two aquatic test species. Environ Toxicol Chem 30(10):2244–2252CrossRefPubMedPubMedCentralGoogle Scholar
  60. Hommel RK (1990) Formation and physiological role of biosurfactants produced by hydrocarbon utilizing microorganisms. Biodegradation 1:107–119. Accessed 8 Aug 2016
  61. Hyne NJ (2001) Nontechnical guide to petroleum geology, exploration, drilling and production, 2nd edn. PennWell Books, USA. ISBN: 978-0878148233Google Scholar
  62. Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterioration Biodegrad 81:28–34CrossRefGoogle Scholar
  63. Ivanova AA, Vetrova AA, Filonov AE, Boronin AM (2015) Oil biodegradation by microbial–plant associations. Appl Biochem Microbiol 51(2):191–197CrossRefGoogle Scholar
  64. Janani PG, Keerthi K, Deshpande A, Bhattacharya S, Indira RP (2014) Molecular identification of the isolated diesel degrading bacteria and optimization studies. J Biochem Technol 5(3):727–730Google Scholar
  65. Jia C, Li X, Allinson G, Liu C, Gong Z (2016) Composition and morphology characterization of exopolymeric substances produced by the PAH-degrading fungus of Mucor mucedo. Environ Sci Pollut Res 23(9):8421–3840CrossRefGoogle Scholar
  66. John RC, Okpokwasili GC (2012) Crude oil degradation and plasmid profile of nitrifying bacteria isolated from oilimpacted mangrove sediment in the Niger Delta of Nigeria. Bull Environ Contam Toxicol 88:1020–1026Google Scholar
  67. Johnson K, Anderson S, Jacobson CS (1996) Phenotypic and genotypic characterization of phenanthrene–degrading fluorescent Pseudomonas biovars. Appl Environ Microbiol 62:3818–3825Google Scholar
  68. Juwarkar AA (2012) Microbe-assisted phytoremediation for restoration of biodiversity of degraded lands: a sustainable solution. Proc Natl Acad Sci India 82:313–318Google Scholar
  69. Kaladumo COK (1996) The implications of gas flaring in the Niger Delta environment. Proceedings of the 8th biennial international NNPC seminar. In: The Petroleum Industry and the Nigerian Environment, Port Harcourt, Nigeria, pp 277–290Google Scholar
  70. Karanth NGK, Deo PG, Veenanadig NK (1999) Microbial production of biosurfactant and their importance. Ferment Sci Technol 77:116–126Google Scholar
  71. Karpagam S, Lalithakumari D (1999) Plasmid mediated degradation of o-and p-phthalate by Pseudomonas fluorescens. World J Microbiol Biotechnol 15:565–569CrossRefGoogle Scholar
  72. Kim H, Jaffé PR (2008) Degradation of toluene by a mixed population of archetypal aerobes, microaerophiles, and denitrifiers: laboratory sand column experiment and multispecies biofilm model formulation. Biotechnol Bioeng 99(2):290–301CrossRefPubMedPubMedCentralGoogle Scholar
  73. Kim YH, Engesser KH, Cerniglia CE (2005) Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria. Microbial Ecol 50:110–119CrossRefGoogle Scholar
  74. Kim YH, Engesser KH, Kim SJ (2007) Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 9(6):1497–1510Google Scholar
  75. Krebs CT, Tanner CE (1981) Restoration of oiled marshes through sediment stripping and Spartina propagation. Proceeding of the 1981 oil spill conference, American Petroleum Institute, Washington, DC, pp 375–385Google Scholar
  76. Kumar BL, Gopal DVRS (2015) Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5(6):867–876CrossRefPubMedPubMedCentralGoogle Scholar
  77. Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20CrossRefGoogle Scholar
  78. Li YN, Porter AW, Mumford A, Zhao XH, LY Y (2011) Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions. J Appl Microbiol 112:269–279CrossRefGoogle Scholar
  79. Li J, Toledo RA, Chungc J, Shim H (2013) Removal of mixture of cis-1, 2 dichloroethylene/trichloroethylene/benzene, toluene, ethylbenzene, and xylenes from contaminated soil by Pseudomonas plecoglossicida. J Chem Technol Biotechnol 89(12):1934–1940CrossRefGoogle Scholar
  80. Li F, Guo S, Hartog N, Yuan Y, Yang X (2016) Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions. Biodegradation 27:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  81. Liu Y, Zhang J, Zhang Z (2004) Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation 15:205–212CrossRefPubMedPubMedCentralGoogle Scholar
  82. Luo Q, Zhang JG, Shen XR, Fan ZQ, He Y, Hou DY (2012) Isolation and characterization of marine diesel oil-degrading Acinetobacter sp. strain Y2. Ann Microbiol 63:633–640CrossRefGoogle Scholar
  83. Ma J, Yan G, Ma W, Cheng C, Wang Q, Guo S (2015) Isolation and characterization of oil-degrading microorganisms for bench-scale evaluations of autochthonous bioaugmentation for oil remediation. Water Air Soil Pollut 226:272–280CrossRefGoogle Scholar
  84. Mabro RE (2006) Oil in the twenty-first century: issues, challenges and opportunities. Oxford University Press, Oxford ISBN-13: 9780199207381Google Scholar
  85. Makkar RS, Cameotra SS (1997) Utilization of molasses for biosurfactant production by two Bacillus strains at thermophilic conditions. J Am Oil Chem Soc 74:887–889CrossRefGoogle Scholar
  86. Mandri T, Lin J (2007) Isolation and characterization of engine oil degrading indigenous microorganisms in Kwazulu-Natal, South Africa. Afr J Biotechnol 6:23–27Google Scholar
  87. Martino CD, Lopez NI, Iustman LJR (2012) Isolation and characterization of benzene, toluene, and xylene degrading Pseudomonas sp., selected as candidate for bioremediation. Int Biodeterioration Biodegrad 67:15–20CrossRefGoogle Scholar
  88. Miller CD, Hall K, Liang YN, Nieman K, Sorensen D, Issa B, Anderson AJ, Sims RC (2004) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading mycobacterium isolates from soil. Microbial Ecol 48:230–238CrossRefGoogle Scholar
  89. Mishra S, Jyot J, Kuhad RC, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67:1675–1681CrossRefPubMedPubMedCentralGoogle Scholar
  90. National Academy of Science (NAS) (2005) Oil spill dispersants: efficacy and effects; Ocean Studies Board.
  91. National Academy of Sciences (1985) Oil in the sea: inputs, fates and effects. National Academy Press, Washington DCGoogle Scholar
  92. Ndlovu T, Khan S, Khan W (2016) Distribution and diversity of biosurfactant producing bacteria in a wastewater treatment plant. Environ Sci Pollut Res 23(10):9993–10004CrossRefGoogle Scholar
  93. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q (2010) Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv 28(5):635–643CrossRefPubMedPubMedCentralGoogle Scholar
  94. Niepceron M, Koltalo FP, Merlin C, Massei AM, Barray S, Bodilis J (2010) Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France). FEMS Microbiol Ecol 71:137–147CrossRefPubMedPubMedCentralGoogle Scholar
  95. Office of Technology Assessment (1990) Coping with an oiled sea: an analysis of oil spill response technologies, OTA-BP-O-63, Washington, DCGoogle Scholar
  96. Office of Technology Assessment (1991) Bioremediation of marine oil spills: an analysis of oil spill response technologies, OTA-BP-O-70, Washington, DCGoogle Scholar
  97. Okpokwasili GC, Odokuma LO (1986) Tolerance of Nitrobacter to toxicity of some Nigerian crude oils. Bull Environ Contam Toxicol 52:388–395Google Scholar
  98. Okpokwasili GC, Okorie BB (1988) Biodeterioration potentials of microorganisms isolated from car-engine lubricating oil. Tribol Znt 21:215–220CrossRefGoogle Scholar
  99. Onur G, Yilmaz F, and Icgen B (2015) Diesel Oil Degradation Potential of a Bacterium Inhabiting Petroleum Hydrocarbon Contaminated Surface Waters and Characterization of Its Emulsification Ability. J Surfactant Deterg 18:707–717.Google Scholar
  100. Onwurah INE (1999) Restoring the crop sustaining potential of crude oil polluted soil by means of Azotobacter inoculation. Plant Prod Res J 4:6–16Google Scholar
  101. Onwurah INE (2002) Anticoagulant potency of water-soluble fractions of Bonny light oil and enzyme induction in rats. Biomed Res 13(1):33–37Google Scholar
  102. Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Res 1(4):307–320Google Scholar
  103. Oyetibo GO, Ilori MO, Obayori OS, Amund OO (2013) Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt. J Basic Microbiol 53:917–927CrossRefPubMedPubMedCentralGoogle Scholar
  104. Pacwa-Płociniczak M, Płaza GA, Poliwoda A, Piotrowska-Seget Z (2014) Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environ Sci Pollut Res 21:9385–9395CrossRefGoogle Scholar
  105. Pedetta A, Pouyte K, Seitz MKH, Babay PA, Espinosa M, Costagliola M, Studdert CA, Peressutti SR (2013) Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments. Int Biodeterior Biodegrad 84:161–167CrossRefGoogle Scholar
  106. Peressutti SR, Alvarez HM, Pucci OH (2003) Dynamics of hydrocarbon-degrading bacteriocenosis of an experimental oil pollution in Patagonian soil. Int Biodeterior Biodegrad 52:21–30CrossRefGoogle Scholar
  107. Perfumo A, Banat IM, Canganella F, Marchant R (2006) Rhamnolipid production by a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa AP02-1. Appl Microbiol Biotechnol 72:132–138CrossRefPubMedPubMedCentralGoogle Scholar
  108. Perry JJ (1980) Oil in the biosphere. In: Guthrie FE, Perry JJ (eds) Introduction to environmental toxicology. Elsevier, New YorkGoogle Scholar
  109. Porob S, Nayak S, Fernandes A, Padmanabhan P, Patil BA, Meena RM, Ramaiah N (2013) PCR screening for the surfactin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus tequilensis NIOS11. Turkish J Biol 37:212–221Google Scholar
  110. Prince RC (1993) Petroleum spill bioremediation in marine environments. Crit Rev Microbiol 19:217–242CrossRefPubMedPubMedCentralGoogle Scholar
  111. Quatrini P, Scaglione G, De Pasquale C, Riela S Puglia AM (2008) Isolation of gram-positive n-alkane degraders from a hydrocarbon-contaminated Mediterranean shoreline. J Appl Microbiol 104:251–259PubMedPubMedCentralGoogle Scholar
  112. Reddy PG, Singh HD (1982) Bacterial degradation of emulsified crude oil and the effect of various surfactants. J Microbiol 43:17–22Google Scholar
  113. Roling WFM, Milner MG, Jones DM, Lee K, Daniel F, Swannell RJP (2002) Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68(11):5537–5548CrossRefPubMedPubMedCentralGoogle Scholar
  114. Roongsawang N, Hase K, Haruki M, Imanaka T, Morikawa M, Kanaya S (2003) Cloning and characterization of the gene cluster encoding arthrofactin synthetase from Pseudomonas sp. MIS38. Chem Biol 10:869–880CrossRefPubMedPubMedCentralGoogle Scholar
  115. Rusansky S, Avigad R, Michaeli S, Gutnick DL (1987) Involvement of a plasmid in growth on and dispersion of crude oil by Acinetobacter calcoaceticus RA57. Appl Environ Microbiol 53:1918–1923PubMedPubMedCentralGoogle Scholar
  116. Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450CrossRefPubMedPubMedCentralGoogle Scholar
  117. Sei A, Fathepure BZ (2009) Biodegradation of BTEX at high salinity by an enrichment culture from hypersaline sediments of Rozel Point at Great Salt Lake. J Appl Microbiol 107:2001–2008CrossRefPubMedPubMedCentralGoogle Scholar
  118. Sharidah AA, Richardtl A, Goleckil JR, Diersteinl R, Tadrosl MH (2000) Isolation and characterization of two hydrocarbon-degrading Bacillus subtilis strains from oil contaminated soil of Kuwait. Microbiol Res 155:157–164CrossRefGoogle Scholar
  119. Shin KH, Kim KW, Ahn Y (2006) Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilisation biodegradation process. J Hazard Mater 137(3):1831–1837CrossRefPubMedPubMedCentralGoogle Scholar
  120. Short JW, Heintz RA (1997) Identification of Exxon Valdez oil in sediments and tissue from Prince William sound and the North Western Gulf of William based in a PAH weathering model. Environ Sci Technol 31:2375–2384CrossRefGoogle Scholar
  121. Simpson DR, Natraj NR, McInerney MJ, Duncan KE (2011) Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 91:1083–1093CrossRefPubMedPubMedCentralGoogle Scholar
  122. Singh D, Fulekar MH (2010) Biodegradation of petroleum hydrocarbons by Pseudomonas putida strain MHF 7109. Clean Soil Air Water 38(8):781–786CrossRefGoogle Scholar
  123. Singh G, Malik DK (2013) Utilization of 2T engine oil by Pseudomonas sp. isolated from automobile workshop contaminated soil. Int J Chem Anal Sci 4(2):80–84CrossRefGoogle Scholar
  124. Sorensen SR, Johnsen AR, Jensen A, Jacobsen CS (2010) Presence of psychrotolerant phenanthrene-mineralizing bacterial populations in contaminated soils from the Greenland High Arctic. FEMS Microbiol Lett 305:148–154CrossRefPubMedPubMedCentralGoogle Scholar
  125. Speight JG (1999) The chemistry and technology of petroleum, Marcel Dekker, ISBN 0–8247–0217-4Google Scholar
  126. Spies RB, Rice SD, Wolfe DA, Wright BA (1996) The effect of the Exxon Valdez oil spill on Alaskan coastal environment. Proceedings of the 1993 Exxon Valdez oil spill symposium, American Fisheries Society, Bethesda, MDGoogle Scholar
  127. Sun W, Sun X, Cupples AM (2014) Identification of Desulfosporosinus as toluene-assimilating microorganisms from a methanogenic consortium. International Biodeterioration and Biodegradation. 88:13–19CrossRefGoogle Scholar
  128. Su WT, Wu BS, Chen WJ (2011) Characterization and biodegradation of motor oil by indigenous Pseudomonas aeruginosa and optimizing medium constituents. J Taiwan Inst Chem Eng 42:689–695CrossRefGoogle Scholar
  129. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles 14:225–231CrossRefPubMedGoogle Scholar
  130. Tiido T, Rignell-Hydbom A, Jönsson BAG, Giwercman YL, Pederson HS, Wojtyniak B, Ludwicki JK, Lesovoy V, Zvyezday V, Spano M, Manicardi GC, Bizzaro D, Bonefeld-Jørgensen EC, Toft G, Bonde JP, Rylander L, Hagmar L, Giwercman A (2006) Impact of PCB and p,p΄-DDE contaminants on human sperm Y:X chromosome ratio: studies on three European populations and the Inuit population in Greenland. Environ Health Perspect 114:718–724CrossRefPubMedPubMedCentralGoogle Scholar
  131. U.S. EPA (1999) A series of fact sheets on Nonpoint Source (NPS) pollution. EPA841-F-96-004, Office of Water, U.S. Environmental Protection AgencyGoogle Scholar
  132. U.S. EPA (2000) The quality of our nation’s waters: a summary of the national water qualityGoogle Scholar
  133. USEPA (2015) National contingency plan product schedule (March 2015). Accessed 17 March 2015
  134. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549CrossRefPubMedPubMedCentralGoogle Scholar
  135. Vasudevan N, Bharathi S, Arulazhagan P (2007) Role of plasmid in the degradation of petroleum hydrocarbon by Pseudomonas fluorescens NS1. J Environ Sci Health Part A: Tox 42(8):1141–1146CrossRefGoogle Scholar
  136. Vecchioli GI, Panno MTD, Painceira MT (1990) Use of selected autochthonous soil bacteria to enhance degradation of hydrocarbons in soil. Environ Pollut 67:249–258CrossRefPubMedPubMedCentralGoogle Scholar
  137. Vieira PA, Faria S, Vieira RB, De Franc FP, Cardoso VL (2009) Statistical analysis and optimization of nitrogen, phosphorus, and inoculum concentrations for the biodegradation of petroleum hydrocarbons by response surface methodology. World J M Biotechnol 25:427–438CrossRefGoogle Scholar
  138. Wang W, Shao Z (2012) Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of degradation long-chain alkanes. FEMS Microbiol Ecol 80:523–533CrossRefPubMedPubMedCentralGoogle Scholar
  139. Weelink SAB, Doesburg WV, Talarico FS, Rijpstra WIC, Smidt H, Stams AJM (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe (III), Mn (IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70:575–585CrossRefPubMedPubMedCentralGoogle Scholar
  140. Xia WX, Li JC, Zheng XL, Bi XJ, Shao JL (2006) Enhanced biodegradation of diesel oil in seawater supplemented with nutrients. Eng Life Sci 6(1):80–85CrossRefGoogle Scholar
  141. Yakimov MM, Timmis KN, Wray V, Freddrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713PubMedPubMedCentralGoogle Scholar
  142. Yenn R, Borah M, Boruah HP, Roy AS, Baruah R, Saikia N, Sahu OP, Tamuli AK (2014) Phytobioremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation. Int J Phytoremediation 16(7–12):909–925CrossRefPubMedPubMedCentralGoogle Scholar
  143. Zeinali M, Vossoughi M, Ardestani SK, Babanezhad E, Masoumian M (2007) Hydrocarbon degradation by thermophilic Nocardia otitidiscaviarum strain TSH1: physiological aspects. J Basic Microbiol 47:534–539CrossRefPubMedPubMedCentralGoogle Scholar
  144. Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P (2011) Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol 102(5):4111–4116CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Debajit Borah
    • 1
  1. 1.Centre for Biotechnology and BioinformaticsDibrugarh UniversityDibrugarhIndia

Personalised recommendations