Advertisement

Raman Signatures of Surface and Interface Effects in Two-Dimensional Layered Materials: Theoretical Insights

  • Sandhya Chintalapati
  • Xin LuoEmail author
  • Su Ying QuekEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

Raman spectroscopy is a non-destructive and versatile method of identifying materials through their Raman “fingerprints”. To this end, first principles calculations are essential to predict the Raman spectra of different materials. First principles calculations, together with parametrized models, can also give atomic scale insights into the origins of Raman shifts and Raman intensities, thus providing a guide to experiments. In this chapter, we will discuss some insights we have gained through our theoretical modeling of Raman spectra in 2D materials and their heterostructures. In particular, we show that surface and interface effects in 2D materials can give rise to observable changes in the Raman spectra. For example, we show that the formation of a surface in the 2D material leads to larger interatomic force constants at the surface, which results in experimentally observed anomalous frequency trends of the \( {E}_{2g}^1 \) mode in MoS2, and the \( {E}_{2g}^1 \) and \( {B}_{2g}^1 \) modes in WSe2. We further show that the Raman intensities of the interlayer shear modes in 2D layered materials can be simply predicted based on the stacking sequence.

References

  1. 1.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new sirect-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, W.J. Thermally Driven, Crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 12, 5576–5580 (2012)CrossRefGoogle Scholar
  3. 3.
    V. Sorkin, H. Pan, H. Shi, S.Y. Quek, Y.W. Zhang, Nanoscale transition metal dichalcogenides: structures, properties, and applications. Crit. Rev. Solid State Mater Sci 39, 319–367 (2014)CrossRefGoogle Scholar
  4. 4.
    X. Luo, Y.Y. Zhao, J. Zhang, Q.H. Xiong, S.Y. Quek, Anomalous frequency trends in MoS2 thin films attributed to surface effects. Phys. Rev. B 88, 75320 (2013)CrossRefGoogle Scholar
  5. 5.
    L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne, Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791–793 (1997)CrossRefGoogle Scholar
  6. 6.
    C. Lee, Q. Li, W. Kalb, X.Z. Liu, H. Berger, R.W. Carpick, J. Hone, Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010)CrossRefGoogle Scholar
  7. 7.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010)CrossRefGoogle Scholar
  8. 8.
    T. Wieting, J. Verble, Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 3, 4286 (1971)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Zeng, B. Zhu, K. Liu, J. Fan, X. Cui, Q.M. Zhang, Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films. Phys. Rev. B 86, 241301 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Ataca, M. Topsakal, E. Aktürk, S. Ciraci, A comparative study of lattice dynamics of three-and two-dimensional MoS2. J. Phys. Chem. C 115, 16354–16361 (2011)CrossRefGoogle Scholar
  12. 12.
    A. Molina-Sánchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys. Rev. B 87, 115413 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Tan, W. Han, W. Zhao, Z. Wu, K. Chang, H. Wang, Y. Wang, N. Bonini, N. Marzari, N. Pugno, The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, S.Y. Quek, Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe 2. Phys. Rev. B 88, 195313 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Luo, X. Lu, C. Cong, T. Yu, Q. Xiong, S. Ying Quek, Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials – a general bond polarizability model. Sci. Rep. 5, 14565 (2015)CrossRefGoogle Scholar
  18. 18.
    C.H. Lui, T.F. Heinz, Measurement of layer breathing mode vibrations in few-layer graphene. Phys. Rev. B 87, 121404 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Luo, X. Lu, G.K.W. Koon, A.H.C. Neto, B. Özyilmaz, Q. Xiong, S.Y. Quek, Large frequency change with thickness in interlayer breathing mode – significant interlayer interactions in few layer black phosphorus. Nano Lett. 15, 3931 (2015)CrossRefGoogle Scholar
  20. 20.
    N.S. Luo, P. Ruggerone, J.P. Toennies, Theory of surface vibrations in epitaxial thin films. Phys. Rev. B 54, 5051–5063 (1996)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S.Y. Quek, Q. Xiong, Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys. Rev. B 90, 245428 (2014)CrossRefGoogle Scholar
  22. 22.
    J.A. Wilson, A.D. Yoffe, The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969)CrossRefGoogle Scholar
  23. 23.
    L. Shulenburger, A.D. Baczewski, Z. Zhu, J. Guan, D. Tomanek, The nature of the interlayer interaction in bulk and few-layer phosphorus. Nano Lett. 15, 8170–8175 (2015)CrossRefGoogle Scholar
  24. 24.
    X. Lu, X. Luo, J. Zhang, S.Y. Quek, Q. Xiong, Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 9, 3559–3597 (2016)CrossRefGoogle Scholar
  25. 25.
    K. Dolui, S.Y. Quek, Quantum-confinement and structural anisotropy result in electrically-Tunable Dirac cone in few-layer black phosphorous (vol 5, 11699, 2015). Sci. Rep. 6, 11699 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Kim, S.S. Baik, S.H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H.J. Choi, K.S. Kim, Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349, 723–726 (2015)CrossRefGoogle Scholar
  27. 27.
    R.X. Fei, V. Tran, L. Yang, Topologically protected Dirac cones in compressed bulk black phosphorus. Phys. Rev. B 91, 195319 (2015)CrossRefGoogle Scholar
  28. 28.
    W. Bao, L. Jing, J. Velasco Jr., Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S.B. Cronin, D. Smirnov, Stacking-dependent band gap and quantum transport in trilayer graphene. Nat. Phys. 7, 948–952 (2011)CrossRefGoogle Scholar
  29. 29.
    Y. Lee, J. Velasco, D. Tran, F. Zhang, W. Bao, L. Jing, K. Myhro, D. Smirnov, C.N. Lau, Broken symmetry quantum hall states in dual-gated ABA trilayer graphene. Nano Lett. 13, 1627–1631 (2013)CrossRefGoogle Scholar
  30. 30.
    R. Suzuki, M. Sakano, Y.J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, Y. Iwasa, Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotechnol. 9, 611–617 (2014)CrossRefGoogle Scholar
  31. 31.
    C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Imaging stacking order in few-layer graphene. Nano Lett. 11, 164–169 (2011)CrossRefGoogle Scholar
  32. 32.
    C. Cong, T. Yu, K. Sato, J. Shang, R. Saito, G.F. Dresselhaus, M.S. Dresselhaus, Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano 5, 8760–8768 (2011)CrossRefGoogle Scholar
  33. 33.
    R. Saito, M. Furukawa, G. Dresselhaus, M. Dresselhaus, Raman spectra of graphene ribbons. J. Phys. Condens. Matter 22, 334203 (2010)CrossRefGoogle Scholar
  34. 34.
    S. Guha, J. Menendez, J. Page, G. Adams, Empirical bond polarizability model for fullerenes. Phys. Rev. B 53, 13106 (1996)CrossRefGoogle Scholar
  35. 35.
    L. Wirtz, M. Lazzeri, F. Mauri, A. Rubio, Raman spectra of BN nanotubes: Ab initio and bond-polarizability model calculations. Phys. Rev. B 71, 241402 (2005)CrossRefGoogle Scholar
  36. 36.
    C.H. Lui, Z. Ye, C. Keiser, E.B. Barros, R. He, Stacking-dependent shear modes in trilayer graphene. Appl. Phys. Lett. 106, 041904 (2015)CrossRefGoogle Scholar
  37. 37.
    X. Lu, M.I.B. Utama, J. Lin, X. Luo, Y. Zhao, J. Zhang, S.T. Pantelides, W. Zhou, S.Y. Quek, Q.H. Xiong, Rapid and nondestructive identification of polytypism and stacking sequences in few-layer molybdenum diselenide by Raman spectroscopy. Adv. Mater. 27, 4502–4508 (2015)CrossRefGoogle Scholar
  38. 38.
    B.J. Mrstik, R. Kaplan, T.L. Reinecke, M. Van Hove, S.Y. Tong, Surface-structure determination of the layered compounds MoS2 and NbSe2 by low-energy electron diffraction. Phys. Rev. B 15, 897–900 (1977)CrossRefGoogle Scholar
  39. 39.
    P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R. Zahn, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)CrossRefGoogle Scholar
  40. 40.
    W. Zhao, Z. Ghorannevis, A.K. Kumar, J.R. Pang, M. Toh, X. Zhang, C. Kloc, P.H. Tan, G. Eda, Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. arXiv:13040911 (2013)Google Scholar
  41. 41.
    S.-Y. Chen, C. Zheng, M.S. Fuhrer, J. Yan, Helicity-resolved Raman scattering of MoS2, MoSe2, WS2, and WSe2 atomic layers. Nano Lett. 15, 2526–2532 (2015)CrossRefGoogle Scholar
  42. 42.
    C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single-and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014)CrossRefGoogle Scholar
  43. 43.
    M. Yamamoto, S.T. Wang, M. Ni, Y.-F. Lin, S.-L. Li, S. Aikawa, W.-B. Jian, K. Ueno, K. Wakabayashi, K. Tsukagoshi, Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2. ACS Nano 8, 3895–3903 (2014)CrossRefGoogle Scholar
  44. 44.
    G. Froehlicher, E. Lorchat, F. Fernique, C. Joshi, A. Molina-Sanchez, L. Wirtz, S. Berciaud, Unified description of the optical phonon modes in N-layer MoTe2. Nano Lett. 15, 6481–6489 (2015)CrossRefGoogle Scholar
  45. 45.
    H.P.C. Miranda, S. Reichardt, G. Froehlicher, A. Molina-Sánchez, S. Berciaud, L. Wirtz, Quantum interference effects in resonant Raman spectroscopy of single- and triple-layer MoTe2 from first-principles. Nano Lett. 17, 2381–2388 (2017)CrossRefGoogle Scholar
  46. 46.
    S. Huang, L. Liang, X. Ling, A.A. Puretzky, D.B. Geohegan, B.G. Sumpter, J. Kong, V. Meunier, M.S. Dresselhaus, Low-frequency interlayer Raman modes to probe interface of twisted bilayer MoS2. Nano Lett. 16, 1435–1444 (2016)CrossRefGoogle Scholar
  47. 47.
    A.A. Puretzky, L. Liang, X. Li, K. Xiao, B.G. Sumpter, V. Meunier, D.B. Geohegan, Twisted MoSe2 bilayers with variable local stacking and interlayer coupling revealed by low-frequency raman spectroscopy. ACS Nano 10, 2736–2744 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Richter, Z.P. Wang, L. Ley, The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981)CrossRefGoogle Scholar
  49. 49.
    J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q. Xiong, Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 11, 2407–2414 (2011)CrossRefGoogle Scholar
  50. 50.
    S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Effect of disorder on Raman scattering of single-layer Mo S 2. Phys. Rev. B 91, 195411 (2015)CrossRefGoogle Scholar
  51. 51.
    W. Shi, M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, P.-H. Tan, Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Materials 3, 025016 (2016)CrossRefGoogle Scholar
  52. 52.
    J.B. Wu, H. Zhao, Y. Li, D. Ohlberg, W. Shi, W. Wu, H. Wang, P.H. Tan, Monolayer molybdenum disulfide nanoribbons with high optical anisotropy. Adv. Opt. Mater. 4, 756–762 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Centre for Advanced 2D MaterialsNational University of SingaporeSingaporeSingapore
  2. 2.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China
  3. 3.Department of PhysicsNational University of SingaporeSingaporeSingapore

Personalised recommendations