Advertisement

Disorder and Defects in Two-Dimensional Materials Probed by Raman Spectroscopy

  • Ado JorioEmail author
  • Luiz Gustavo Cançado
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

This paper describes the fundamentals of using Raman spectroscopy to characterize disorder in two-dimensional (2D) systems caused by the presence of defects. From the dimensionality point of view, in 2D crystalline structures disorder can be described as addition of point-like (zero-dimensional, 0D) or line-like (one-dimensional, 1D) defects. To characterize the amount of 0D and 1D defects separately, two spectral parameters are needed. The two basic parameters are related to defect-induced activation of forbidden Raman modes and to defect-induced confinement of phonons. A two-dimensional Raman phase diagram can be built based on geometrical considerations, and the geometrical parameters are governed by fundamental aspects such as phonon and electron coherence lengths and Raman cross sections. We apply the general picture to the well-studied case of graphene amorphization, which has been studied since the 70’ies, with the two basic parameters being represented by the peak linewidths (Γ) and by the integrated intensity ratio (AD/AG) between the defect-induced (D) mode and the Raman allowed graphene (G) mode. The amorphization of graphene has been fully described in the terms presented here thanks to the development of standard materials with well-controlled amount of either point-like or line-like defects.

Keywords

Defects Raman spectroscopy Coherence length Two-dimensional systems Graphene 

References

  1. 1.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)CrossRefGoogle Scholar
  2. 2.
    L.M. Malard, M.H.D. Guimarães, D.L. Mafra, M.S.C. Mazzoni, A. Jorio, Group-theory analysis of electrons and phonons in N-layer graphene systems. Phys. Rev. B 79, 125426 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Ribeiro-Soares, R.M. Almeida, L.G. Cançado, M.S. Dresselhaus, A. Jorio, Group theory for structural analysis and lattice vibrations in phosphorene systems. Phys. Rev. B 91, 205421 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Ling, H. Wang, S. Huang, F. Xia, M.S. Dresselhaus, The renaissance of black phosphorus. Proc. Natl. Acad. Sci. 112(15), 4523–4530 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Xi, S. Huang, E.H. Hasdeo, L. Liang, W.M. Parkin, Y. Tatsumi, A.R.T. Nugraha, A.A. Puretzky, P.M. Das, B.G. Sumpter, D.B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, M.S. Dresselhaus, Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 16(4), 2260–2267 (2016)CrossRefGoogle Scholar
  6. 6.
    R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, et al., Hunting for monolayer boron nitride: optical and Raman signatures. Small 7(4), 465–468 (2011)CrossRefGoogle Scholar
  7. 7.
    J. Ribeiro-Soares, R.M. Almeida, E.B. Barros, P.T. Araujo, M.S. Dresselhaus, L.G. Cançado, A. Jorio, Group theory analysis of phonons in two-dimensional transition metal dichalcogenides. Phys. Rev. B 90, 115438 (2014)CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, S. Mildred, Dresselhaus, and Qihua Xiong, interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13(3), 1007–1015 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Jorio, M.S. Dresselhaus, R. Saito, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, Weinheim, 2011)CrossRefGoogle Scholar
  10. 10.
    L.G. Cançado, M.G. Silva, E.H.M. Ferreira, F. Hof, K. Kampioti, K. Huang, A. Pénicaud, C.A. Achete, B.R. Capaz, A. Jorio, 2D Materials. 4, 025039 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Jorio, A.G. Souza Filho, Raman studies of carbon nanostructures. Annu. Rev. Mater. Res. 46, 357–382 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)CrossRefGoogle Scholar
  13. 13.
    M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, H.A. Goldberg, Graphite Fibers and Filaments, vol 5 (Springer, Dordrecht, 2013)Google Scholar
  14. 14.
    M.S. Dresselhaus, R. Kalish, Ion Implantation in Diamond, Graphite and Related Materials, vol 22 (Springer, Dordrecht, 2013)Google Scholar
  15. 15.
    A. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  16. 16.
    K. Takai, M. Oga, H. Sato, T. Enoki, Y. Ohki, A. Taomoto, K. Suenaga, S. Iijima, Phys. Rev. B 67(21), 214202 (2003)CrossRefGoogle Scholar
  17. 17.
    A. Ferrari, J. Robertson, Phil. Trans. R. Soc. Lond. A 362, 2477 (2004)CrossRefGoogle Scholar
  18. 18.
    L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhes-Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 163106 (2006)CrossRefGoogle Scholar
  19. 19.
    A. Ferrari, Solid State Comm. 143, 47 (2007)Google Scholar
  20. 20.
    C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. Novoselov, D. Basko, A. Ferrari, Nano Lett. 9, 1433 (2009)CrossRefGoogle Scholar
  21. 21.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9(11), 1276 (2007)CrossRefGoogle Scholar
  22. 22.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751 (2010)CrossRefGoogle Scholar
  23. 23.
    M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48, 1592 (2010)CrossRefGoogle Scholar
  24. 24.
    E.M. Ferreira, M.V. Moutinho, F. Stavale, M. Lucchese, R.B. Capaz, C. Achete, A. Jorio, Phys. Rev. B 82, 125429 (2010)CrossRefGoogle Scholar
  25. 25.
    A. Jorio, M.M. Lucchese, F. Stavale, E.H.M. Ferreira, M.V. Moutinho, R.B. Capaz, C.A. Achete, J. Phys. Condens. Matter 22, 334204 (2010)CrossRefGoogle Scholar
  26. 26.
    L. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala, A. Ferrari, Nano Lett. 11, 3190 (2011)CrossRefGoogle Scholar
  27. 27.
    R. Beams, L.G. Cançado, L. Novotny, Nano Lett. 11, 1177 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Nano Lett. 12, 3925 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Jorio, ISRN Nanotech. (2012)Google Scholar
  30. 30.
    A. Jorio, L.G. Cançado, Phys. Chem. Chem. Phys. 14, 15246 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Ribeiro-Soares, M. Oliveros, C. Garin, M. David, L. Martins, C. Almeida, E. Martins-Ferreira, K. Takai, T. Enoki, R. Magalhães Paniago, A. Malachias, A. Jorio, B. Archanjo, C. Achete, L. Cançado, Carbon 95, 646 (2015)CrossRefGoogle Scholar
  32. 32.
    R. Beams, L.G. Cançado, L. Novotny, J. Phys. Condes. Matter 27, 83002 (2015)CrossRefGoogle Scholar
  33. 33.
    C. Thomsen, S. Reich, Double resonant Raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000)CrossRefGoogle Scholar
  34. 34.
    R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Probing phonon dispersion relations of graphite by double resonance Raman scattering. Phys. Rev. Lett. 88, 027401 (2001)CrossRefGoogle Scholar
  35. 35.
    D.M. Basko, Theory of resonant multiphonon Raman scattering in graphene. Phys. Rev. B 78(12), 125418 (2008)CrossRefGoogle Scholar
  36. 36.
    P. Venezuela, M. Lazzeri, F. Mauri, Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 84(3), 035433 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, D. Roy, Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015)Google Scholar
  38. 38.
    Z. Lin, A. McCreary, N. Briggs, S. Subramanian, K. Zhang, Y. Sun, X. Li, N.J. Borys, H. Yuan, S.K. Fullerton-Shirey, 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3, 4 (2016)CrossRefGoogle Scholar
  39. 39.
    L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S. Dantas, A. Jorio, Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 247401 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations