Advertisement

Raman Spectroscopy of Anisotropic Two-Dimensional Materials

  • Juanxia Wu
  • Shishu Zhang
  • Lianming Tong
  • Jin Zhang
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

Due to the in-plane structural anisotropy, two-dimensional (2D) layered materials with low symmetry exhibit unique crystalline-axis dependent properties, including the optical, mechanical and electrical properties. Raman spectroscopy, in particular, polarized Raman spectroscopy, has been used as a rapid and non-invasive technique to study the composition, structure and symmetry of 2D anisotropic layered materials. In this chapter, the recent advances on the Raman spectroscopic studies of anisotropic 2D materials are summarized. The Raman selection rules and the structural symmetry will be discussed, followed by the overview of the polarized Raman scattering studies of anisotropic 2D materials cataloged by crystal symmetries.

Keywords

Raman scattering In-plane anisotropy Two-dimensional materials Reduced symmetry 

Notes

Acknowledgments

This work was supported by the Ministry of Science and Technology of China (2016YFA0200100 and 2015CB932400) and the National Natural Science Foundation of China (51432002, 51720105003, 21790052, 11374355 and 21573004).

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004).  https://doi.org/10.1126/science.1102896 CrossRefGoogle Scholar
  2. 2.
    Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317(5840), 932–934 (2007).  https://doi.org/10.1126/science.1144216 CrossRefGoogle Scholar
  3. 3.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011).  https://doi.org/10.1038/nnano.2010.279 CrossRefGoogle Scholar
  4. 4.
    H.O.H. Churchill, P. Jarillo-Herrero, Two-dimensional crystals: Phosphorus joins the family. Nat. Nanotechnol. 9(5), 330–331 (2014).  https://doi.org/10.1038/nnano.2014.85 CrossRefGoogle Scholar
  5. 5.
    L.K. Li, Y.J. Yu, G.J. Ye, Q.Q. Ge, X.D. Ou, H. Wu, D.L. Feng, X.H. Chen, Y.B. Zhang, Black phosphorus field-effect transistors. Nat. Nanotechnol.. 9(5), 372–377 (2014).  https://doi.org/10.1038/nnano.2014.35 CrossRefGoogle Scholar
  6. 6.
    L. Meng, Y.L. Wang, L.Z. Zhang, S.X. Du, R.T. Wu, L.F. Li, Y. Zhang, G. Li, H.T. Zhou, W.A. Hofer, H.J. Gao, Buckled silicene formation on Ir(111). Nano Lett.. 13(2), 685–690 (2013).  https://doi.org/10.1021/nl304347w CrossRefGoogle Scholar
  7. 7.
    A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films. Phys. Rev. Lett.. 108(24), 245501 (2012).  https://doi.org/10.1103/PhysRevLett.108.245501 CrossRefGoogle Scholar
  8. 8.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett.. 108(15), 155501 (2012).  https://doi.org/10.1103/PhysRevLett.108.155501 CrossRefGoogle Scholar
  9. 9.
    L.F. Li, S.Z. Lu, J.B. Pan, Z.H. Qin, Y.Q. Wang, Y.L. Wang, G.Y. Cao, S.X. Du, H.J. Gao, Buckled germanene formation on Pt(111). Adv. Mater.. 26(28), 4820–4824 (2014).  https://doi.org/10.1002/adma.201400909 CrossRefGoogle Scholar
  10. 10.
    Q.L. Feng, Y.M. Zhu, J.H. Hong, M. Zhang, W.J. Duan, N.N. Mao, J.X. Wu, H. Xu, F.L. Dong, F. Lin, C.H. Jin, C.M. Wang, J. Zhang, L.M. Xie, Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv. Mater. 26(17), 2648–2653 (2014).  https://doi.org/10.1002/adma.201306095 CrossRefGoogle Scholar
  11. 11.
    D.O. Dumcenco, K.Y. Chen, Y.P. Wang, Y.S. Huang, K.K. Tiong, Raman study of 2H-Mo1-xWxS2 layered mixed crystals. J. Alloys Compd. 506(2), 940–943 (2010).  https://doi.org/10.1016/j.jallcom.2010.07.120 CrossRefGoogle Scholar
  12. 12.
    M. Zhang, J.X. Wu, Y.M. Zhu, D.O. Dumcenco, J.H. Hong, N.N. Mao, S.B. Deng, Y.F. Chen, Y.L. Yang, C.H. Jin, S.H. Chaki, Y.S. Huang, J. Zhang, L.M. Xie, Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8(7), 7130–7137 (2014).  https://doi.org/10.1021/nn5020566 CrossRefGoogle Scholar
  13. 13.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695–2700 (2010).  https://doi.org/10.1021/nn1003937 CrossRefGoogle Scholar
  14. 14.
    Z.H. Ni, Y.Y. Wang, T. Yu, Z.X. Shen, Raman spectroscopy and imaging of graphene. Nano Res. 1(4), 273–291 (2008).  https://doi.org/10.1007/s12274-008-8036-1 CrossRefGoogle Scholar
  15. 15.
    J.M.B.L. dos Santos, N.M.R. Peres, A.H. Castro, Graphene bilayer with a twist: electronic structure. Phys. Rev. Lett. 99(25), 256802 (2007).  https://doi.org/10.1103/PhysRevLett.99.256802 CrossRefGoogle Scholar
  16. 16.
    J.G. He, K. Hummer, C. Franchini, Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 89(7), 075409 (2014).  https://doi.org/10.1103/PhysRevB.89.075409 CrossRefGoogle Scholar
  17. 17.
    S.X. Yang, J. Kang, Q. Yue, K. Yao, Vapor phase growth and imaging stacking order of bilayer molybdenum disulfide. J. Phys. Chem. C 118(17), 9203–9208 (2014).  https://doi.org/10.1021/jp500050r CrossRefGoogle Scholar
  18. 18.
    Y.L. Wang, C.X. Cong, C.Y. Qiu, T. Yu, Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9(17), 2857–2861 (2013).  https://doi.org/10.1002/smll.201202876 CrossRefGoogle Scholar
  19. 19.
    F.N. Xia, H. Wang, Y.C. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).  https://doi.org/10.1038/ncomms5458 CrossRefGoogle Scholar
  20. 20.
    N.N. Mao, J.X. Wu, B.W. Han, J.J. Lin, L.M. Tong, J. Zhang, Birefringence-directed Raman selection rules in 2D black phosphorus crystals. Small 12(19), 2627–2633 (2016).  https://doi.org/10.1002/smll.201600295 CrossRefGoogle Scholar
  21. 21.
    J.X. Wu, N.N. Mao, L.M. Xie, H. Xu, J. Zhang, Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem.Int. Ed 54(8), 2366–2369 (2015).  https://doi.org/10.1002/anie.201410108 CrossRefGoogle Scholar
  22. 22.
    X.M. Wang, A.M. Jones, K.L. Seyler, V. Tran, Y.C. Jia, H. Zhao, H. Wang, L. Yang, X.D. Xu, F.N. Xia, Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10(6), 517–521 (2015).  https://doi.org/10.1038/nnano.2015.71 CrossRefGoogle Scholar
  23. 23.
    R.X. Fei, L. Yang, Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett. 105, 083120 (2014).  https://doi.org/10.1063/1.4894273 CrossRefGoogle Scholar
  24. 24.
    Y.L. Wang, C.X. Cong, R.X. Fei, W.H. Yang, Y. Chen, B.C. Cao, L. Yang, T. Yu, Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 8(12), 3944–3953 (2015).  https://doi.org/10.1007/s12274-015-0895-7 CrossRefGoogle Scholar
  25. 25.
    T. Hong, B. Chamlagain, W.Z. Lin, H.J. Chuang, M.H. Pan, Z.X. Zhou, Y.Q. Xu, Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6(15), 8978–8983 (2014).  https://doi.org/10.1039/c4nr02164a CrossRefGoogle Scholar
  26. 26.
    J. Xia, X.Z. Li, X. Huang, N.N. Mao, D.D. Zhu, L. Wang, H. Xu, X.M. Meng, Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 8(4), 2063–2070 (2016).  https://doi.org/10.1039/c5nr07675g CrossRefGoogle Scholar
  27. 27.
    L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508(7496), 373–377 (2014).  https://doi.org/10.1038/nature13184 CrossRefGoogle Scholar
  28. 28.
    S.X. Huang, Y. Tatsumi, X. Ling, H.H. Guo, Z.Q. Wang, G. Watson, A.A. Puretzky, D.B. Geohegan, J. Kong, J. Li, T. Yang, R. Saito, M.S. Dresselhaus, In-plane optical anisotropy of layered gallium telluride. ACS Nano 10(9), 8964–8972 (2016).  https://doi.org/10.1021/acsnano.6b05002 CrossRefGoogle Scholar
  29. 29.
    Z.X. Wang, K. Xu, Y.C. Li, X.Y. Zhan, M. Safdar, Q.S. Wang, F.M. Wang, J. He, Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano 8(5), 4859–4865 (2014).  https://doi.org/10.1021/nn500782n CrossRefGoogle Scholar
  30. 30.
    D.H. Keum, S. Cho, J.H. Kim, D.H. Choe, H.J. Sung, M. Kan, H. Kang, J.Y. Hwang, S.W. Kim, H. Yang, K.J. Chang, Y.H. Lee, Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11(6), 482–486 (2015).  https://doi.org/10.1038/nphys3314 CrossRefGoogle Scholar
  31. 31.
    D.A. Chenet, O.B. Aslan, P.Y. Huang, C. Fan, A.M. van der Zande, T.F. Heinz, J.C. Hone, In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission Electron microscopy. Nano Lett. 15(9), 5667–5672 (2015).  https://doi.org/10.1021/acs.nanolett.5b00910 CrossRefGoogle Scholar
  32. 32.
    S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J.Y. Yan, D.F. Ogletree, S. Aloni, J. Ji, S.S. Li, J.B. Li, F.M. Peeters, J.Q. Wu, Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014).  https://doi.org/10.1038/ncomms4252 CrossRefGoogle Scholar
  33. 33.
    D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, S.J. Bending, Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor. ACS Nano 8(11), 11154–11164 (2014).  https://doi.org/10.1021/nn5053926 CrossRefGoogle Scholar
  34. 34.
    J.A. Yan, W.Y. Ruan, M.Y. Chou, Phonon dispersions and vibrational properties of monolayer, bilayer, and Trilayer graphene: density-functional perturbation theory. Phys. Rev. B 77(12), 125401 (2008).  https://doi.org/10.1103/PhysRevB.77.125401 CrossRefGoogle Scholar
  35. 35.
    J.X. Wu, H. Xu, W.H. Mu, L.M. Xie, X. Ling, J. Kong, M.S. Dresselhaus, J. Zhang, Observation of low-frequency combination and overtone Raman modes in Misoriented graphene. J. Phys. Chem. C 118(7), 3636–3643 (2014).  https://doi.org/10.1021/jp411573c CrossRefGoogle Scholar
  36. 36.
    O.B. Aslan, D.A. Chenet, A.M. van der Zande, J.C. Hone, T.F. Heinz, Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photonics 3(1), 96–101 (2016).  https://doi.org/10.1021/acsphotonics.5b00486 CrossRefGoogle Scholar
  37. 37.
    A. Lapinska, A. Taube, J. Judek, M. Zdrojek, Temperature evolution of phonon properties in few-layer black phosphorus. J. Phys. Chem. C 120(9), 5265–5270 (2016).  https://doi.org/10.1021/acs.jpcc.6b01468 CrossRefGoogle Scholar
  38. 38.
    F. Ahmed, Y.D. Kim, M.S. Choi, X. Liu, D.S. Qu, Z. Yang, J.Y. Hu, I.P. Herman, J. Hone, W.J. Yoo, High electric field carrier transport and power dissipation in multilayer black phosphorus field effect transistor with dielectric engineering. Adv. Funct. Mater. 27(4), 1604025 (2017).  https://doi.org/10.1002/adfm.201604025 CrossRefGoogle Scholar
  39. 39.
    R. Loudon, The Raman effect in crystals. Adv. Phys. 50(7), 813–864 (2001).  https://doi.org/10.1080/00018730110101395 CrossRefGoogle Scholar
  40. 40.
    J.B. Bates, A.S. Quist, Polarized Raman spectra of Beta-quartz. J. Chem. Phys. 56(4), 1528–1533 (1972).  https://doi.org/10.1063/1.1677402 CrossRefGoogle Scholar
  41. 41.
    K. Khaliji, A. Fallahi, L. Martin-Moreno, T. Low, Tunable Plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials. Phys. Rev. B 95(20), 201401 (2017).  https://doi.org/10.1103/PhysRevB.95.201401 CrossRefGoogle Scholar
  42. 42.
    C. Kranert, C. Sturm, R. Schmidt-Grund, M. Grundmann, Raman tensor formalism for optically anisotropic crystals. Phys. Rev. Lett. 116(12), 127401 (2016).  https://doi.org/10.1103/PhysRevLett.116.127401 CrossRefGoogle Scholar
  43. 43.
    V. Tran, R. Soklaski, Y.F. Liang, L. Yang, Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89(23), 235319 (2014).  https://doi.org/10.1103/PhysRevB.89.235319 CrossRefGoogle Scholar
  44. 44.
    X. Ling, L.B. Liang, S.X. Huang, A.A. Puretzky, D.B. Geohegan, B.G. Sumpter, J. Kong, V. Meunier, M.S. Dresselhaus, Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Lett. 15(6), 4080–4088 (2015).  https://doi.org/10.1021/acs.nanolett.5b01117 CrossRefGoogle Scholar
  45. 45.
    X. Luo, X. Lu, G.K.W. Koon, A.H.C. Neto, B. Ozyilmaz, Q.H. Xiong, S.Y. Quek, Large frequency change with thickness in interlayer breathing mode-significant interlayer interactions in few layer black phosphorus. Nano Lett. 15(6), 3931–3938 (2015).  https://doi.org/10.1021/acs.nanolett.5b00775 CrossRefGoogle Scholar
  46. 46.
    H.B. Ribeiro, C.E.P. Villegas, D.A. Bahamon, D. Muraca, A.H.C. Neto, E.A.T. de Souza, A.R. Rocha, M.A. Pimenta, C.J.S. de Matos, Edge phonons in black phosphorus. Nat. Commun. 7, 12191 (2016).  https://doi.org/10.1038/ncomms12191 CrossRefGoogle Scholar
  47. 47.
    X. Ling, S.X. Huang, E.H. Hasdeo, L.B. Liang, W.M. Parkin, Y. Tatsumi, A.R.T. Nugraha, A.A. Puretzky, P.M. Das, B.G. Sumpter, D.B. Geohegan, J. Kong, R. Saito, M. Drndic, V. Meunier, M.S. Dresselhaus, Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 16(4), 2260–2267 (2016).  https://doi.org/10.1021/acs.nanolett.5b04540 CrossRefGoogle Scholar
  48. 48.
    J. Kim, J.U. Lee, J. Lee, H.J. Park, Z. Lee, C. Lee, H. Cheong, Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 7(44), 18708–18715 (2015).  https://doi.org/10.1039/c5nr04349b CrossRefGoogle Scholar
  49. 49.
    H.B. Ribeiro, M.A. Pimenta, C.J.S. de Matos, R.L. Moreira, A.S. Rodin, J.D. Zapata, E.A.T. de Souza, A.H.C. Neto, Unusual angular dependence of the Raman response in black phosphorus. ACS Nano 9(4), 4270–4276 (2015).  https://doi.org/10.1021/acsnano.5b00698 CrossRefGoogle Scholar
  50. 50.
    Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014).  https://doi.org/10.1063/1.4885215 CrossRefGoogle Scholar
  51. 51.
    E.S. Zouboulis, M. Grimsditch, Raman scattering in diamond up to 1900 K. Phys. Rev. B 43(15), 12490–12493 (1991).  https://doi.org/10.1103/PhysRevB.43.12490 CrossRefGoogle Scholar
  52. 52.
    D.J. Late, Temperature dependent phonon shifts in few-layer black phosphorus. ACS Appl. Mater. Interfaces 7(10), 5857–5862 (2015).  https://doi.org/10.1021/am509056b CrossRefGoogle Scholar
  53. 53.
    G. Qiu, Y.C. Du, A. Charnas, H. Zhou, S.Y. Jin, Z. Luo, D.Y. Zemlyanov, X.F. Xu, G.J. Cheng, P.D.D. Ye, Observation of optical and electrical in-plane anisotropy in high-mobility few-layer ZrTe5. Nano Lett. 16(12), 7364–7369 (2016).  https://doi.org/10.1021/acs.nanolett.6b02629 CrossRefGoogle Scholar
  54. 54.
    Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen, L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang, F. Xiu, Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5. Nat. Commun. 7, 12516 (2016).  https://doi.org/10.1038/ncomms12516 CrossRefGoogle Scholar
  55. 55.
    G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang, M. Tian, Transport evidence for the three-dimensional Dirac semimetal phase inZrTe5. Phys. Rev. B 93, 115414 (2016).  https://doi.org/10.1103/PhysRevB.93.115414
  56. 56.
    H. Weng, X. Dai, Z. Fang, Transition-metal PentatellurideZrTe5andHfTe5: a paradigm for large-gap quantum spin hall insulators. Phys. Rev. X 4, 011002 (2014).  https://doi.org/10.1103/PhysRevX.4.011002
  57. 57.
    R. Wu, J.Z. Ma, S.M. Nie, L.X. Zhao, X. Huang, J.X. Yin, B.B. Fu, P. Richard, G.F. Chen, Z. Fang, X. Dai, H.M. Weng, T. Qian, H. Ding, S.H. Pan, Evidence for topological edge states in a large energy gap near the step edges on the surface ofZrTe5. Phys. Rev. X 6, 021017 (2016).  https://doi.org/10.1103/PhysRevX.6.021017
  58. 58.
    M. Kim, S. Han, J.H. Kim, J.U. Lee, Z. Lee, H. Cheong, Determination of the thickness and orientation of few-layer tungsten ditelluride using polarized Raman spectroscopy. 2d Materials 3(3), 034004 (2016).  https://doi.org/10.1088/2053-1583/3/3/034004 CrossRefGoogle Scholar
  59. 59.
    Q.J. Song, X.C. Pan, H.F. Wang, K. Zhang, Q.H. Tan, P. Li, Y. Wan, Y.L. Wang, X.L. Xu, M.L. Lin, X.G. Wan, F.Q. Song, L. Dai, The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep. 6, 29254 (2016).  https://doi.org/10.1038/srep29254 CrossRefGoogle Scholar
  60. 60.
    X.L. Xu, Q.J. Song, H.F. Wang, P. Li, K. Zhang, Y.L. Wang, K. Yuan, Z.C. Yang, Y. Ye, L. Dai, In-plane anisotropies of polarized Raman response and electrical conductivity in layered tin selenide. ACS Appl. Mater. Interfaces 9(14), 12601–12607 (2017).  https://doi.org/10.1021/acsami.7b00782 CrossRefGoogle Scholar
  61. 61.
    S.W. Luo, X. Qi, H. Yao, X.H. Ren, Q. Chen, J.X. Zhong, Temperature-dependent Raman responses of the vapor-deposited tin selenide ultrathin flakes. J. Phys. Chem. C 121(8), 4674–4679 (2017).  https://doi.org/10.1021/acs.jpcc.6b12059 CrossRefGoogle Scholar
  62. 62.
    Z. Tian, C.L. Guo, M.X. Zhao, R.R. Li, J.M. Xue, Two-dimensional SnS: a phosphorene analogue with strong in-plane electronic anisotropy. ACS Nano 11(2), 2219–2226 (2017).  https://doi.org/10.1021/acsnano.6b08704 CrossRefGoogle Scholar
  63. 63.
    D.Z. Tan, H.E. Lim, F.J. Wang, N.B. Mohamed, S. Mouri, W.J. Zhang, Y. Miyauchi, M. Ohfuchi, K. Matsuda, Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide. Nano Res. 10(2), 546–555 (2017).  https://doi.org/10.1007/s12274-016-1312-6 CrossRefGoogle Scholar
  64. 64.
    Q.J. Song, Q.H. Tan, X. Zhang, J.B. Wu, B.W. Sheng, Y. Wan, X.Q. Wang, L. Dai, P.H. Tan, Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys. Rev. B 93(11), 115409 (2016).  https://doi.org/10.1103/PhysRevB.93.115409 CrossRefGoogle Scholar
  65. 65.
    X.L. Ma, P.J. Guo, C.J. Yi, Q.H. Yu, A.M. Zhang, J.T. Ji, Y. Tian, F. Jin, Y.Y. Wang, K. Liu, T.L. Xia, Y.G. Shi, Q.M. Zhang, Raman scattering in the transition-metal dichalcogenides of 1T′-MoTe2, Td-MoTe2, and Td-WTe2. Phys. Rev. B 94(21), 214105 (2016).  https://doi.org/10.1103/PhysRevB.94.214105 CrossRefGoogle Scholar
  66. 66.
    A. Jorio, M. Dresselhaus, R. Saito, G. Dresselhaus, Raman spectroscopy in graphene related systems (Wiley VCH, Weinheim, 2011)CrossRefGoogle Scholar
  67. 67.
    W. Kong, C. Bacaksiz, B. Chen, K.D. Wu, M. Blei, X. Fan, Y.X. Shen, H. Sahin, D. Wright, D.S. Narang, S. Tongay, Angle resolved vibrational properties of anisotropic transition metal trichalcogenide nanosheets. Nanoscale 9(12), 4175–4182 (2017).  https://doi.org/10.1039/c7nr00711f CrossRefGoogle Scholar
  68. 68.
    R. Beams, L.G. Cancado, S. Krylyuk, I. Kalish, B. Kalanyan, A.K. Singh, K. Choudhary, A. Bruma, P.M. Vora, F. Tavazza, A.V. Da-Vydov, S.J. Stranick, Characterization of few-layer 1T′ MoTe2 by polarization-resolved second harmonic generation and Raman scattering. ACS Nano 10(10), 9626–9636 (2016).  https://doi.org/10.1021/acsnano.6b05127 CrossRefGoogle Scholar
  69. 69.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).  https://doi.org/10.1103/PhysRevLett.105.136805 CrossRefGoogle Scholar
  70. 70.
    H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, MoS2 and WS2 analogues of graphene. Angew. Chem.Int..Ed 49(24), 4059–4062 (2010).  https://doi.org/10.1002/anie.201000009 CrossRefGoogle Scholar
  71. 71.
    K. Friemelt, M.C. Luxsteiner, E. Bucher, Optical properties of the layered transition-metal-dichalcogenide ReS2: anisotropy in the van der waals plane. J. Appl. Phys. 74(8), 5266–5268 (1993).  https://doi.org/10.1063/1.354268 CrossRefGoogle Scholar
  72. 72.
    F.C. Liu, S.J. Zheng, X.X. He, A. Chaturvedi, J.F. He, W.L. Chow, T.R. Mion, X.L. Wang, J.D. Zhou, Q.D. Fu, H.J. Fan, B.K. Tay, L. Song, R.H. He, C. Kloc, P.M. Ajayan, Z. Liu, Highly sensitive detection of polarized light using anisotropic 2D ReS2. Adv. Funct. Mater. 26(8), 1169–1177 (2016).  https://doi.org/10.1002/adfm.201504546 CrossRefGoogle Scholar
  73. 73.
    E.F. Liu, Y.J. Fu, Y.J. Wang, Y.Q. Feng, H.M. Liu, X.G. Wan, W. Zhou, B.G. Wang, L.B. Shao, C.H. Ho, Y.S. Huang, Z.Y. Cao, L.G. Wang, A.D. Li, J.W. Zeng, F.Q. Song, X.R. Wang, Y. Shi, H.T. Yuan, H.Y. Hwang, Y. Cui, F. Miao, D.Y. Xing, Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun. 6, 6991 (2015).  https://doi.org/10.1038/ncomms7991 CrossRefGoogle Scholar
  74. 74.
    Y.Q. Feng, W. Zhou, Y.J. Wang, J. Zhou, E.F. Liu, Y.J. Fu, Z.H. Ni, X.L. Wu, H.T. Yuan, F. Miao, B.G. Wang, X.G. Wan, D.Y. Xing, Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B 92(5), 054110 (2015).  https://doi.org/10.1103/PhysRevB.92.054110 CrossRefGoogle Scholar
  75. 75.
    R. He, J.A. Yan, Z.Y. Yin, Z.P. Ye, G.H. Ye, J. Cheng, J. Li, C.H. Lui, Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett. 16(2), 1404–1409 (2016).  https://doi.org/10.1021/acs.nanolett.5b04925 CrossRefGoogle Scholar
  76. 76.
    E. Lorchat, G. Froehlicher, S. Berciaud, Splitting of interlayer shear modes and photon energy dependent anisotropic Raman response in N-layer ReSe2 and ReS2. ACS Nano 10(2), 2752–2760 (2016).  https://doi.org/10.1021/acsnano.5b07844 CrossRefGoogle Scholar
  77. 77.
    X.F. Qiao, J.B. Wu, L.W. Zhou, J.S. Qiao, W. Shi, T. Chen, X. Zhang, J. Zhang, W. Ji, P.H. Tan, Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 8(15), 8324–8332 (2016).  https://doi.org/10.1039/c6nr01569g CrossRefGoogle Scholar
  78. 78.
    P. Nagler, G. Plechinger, C. Schuller, T. Korn, Observation of anisotropic interlayer Raman modes in few-layer ReS2. Phys. Status Solidi Rapid Res. Lett 10(2), 185–189 (2016).  https://doi.org/10.1002/pssr.201510412 CrossRefGoogle Scholar
  79. 79.
    L. Hart, S. Dale, S. Hoye, J.L. Webb, D. Wolverson, Rhenium dichalcogenides: layered semiconductors with two vertical orientations. Nano Lett. 16(2), 1381–1386 (2016).  https://doi.org/10.1021/acs.nanolett.5b04838 CrossRefGoogle Scholar
  80. 80.
    W. Wen, Y.M. Zhu, X.L. Liu, H.P. Hsu, Z. Fei, Y.F. Chen, X.S. Wang, M. Zhang, K.H. Lin, F.S. Huang, Y.P. Wang, Y.S. Huang, C.H. Ho, P.H. Tan, C.H. Jin, L.M. Xie, Anisotropic spectroscopy and electrical properties of 2D ReS2(1-x)Se2x alloys with distorted 1T structure. Small 13(12), 1603788 (2017).  https://doi.org/10.1002/smll.201603788 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Center for Nanochemistry, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations