Advertisement

Raman Spectroscopy of Isotropic Two-Dimensional Materials Beyond Graphene

  • Xin Lu
  • Qing-Hai Tan
  • Qihua XiongEmail author
  • Jun ZhangEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

In this chapter, we will focus on the isotropic (or rather less anisotropic) two-dimensional layered materials, including the layered transition metal dichalcogenides, the topologically insulating Bi2X3 (X = Se, Te) etc.

Notes

Acknowledgments

This work is supported by National Basic Research Program of China (2017YFA0303401), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000) LU JIAXI International team program. J. Z. also acknowledges support from National Young 1000 Talent Plan of China.

References

  1. 1.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, H.Z. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013)CrossRefGoogle Scholar
  3. 3.
    A.K. Geim, I.V. Van der Grigorieva, Waals heterostructures. Nature 499, 419–425 (2013)CrossRefGoogle Scholar
  4. 4.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451–10453 (2005)CrossRefGoogle Scholar
  5. 5.
    X. Xu, W. Yao, D. Xiao, T.F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014)CrossRefGoogle Scholar
  6. 6.
    K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7, 490–493 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012)CrossRefGoogle Scholar
  9. 9.
    K.F. Mak, K.L. McGill, J. Park, P.L. McEuen, The valley hall effect in MoS2 transistors. Science 344, 1489–1492 (2014)CrossRefGoogle Scholar
  10. 10.
    S.F. Wu, J.S. Ross, G.B. Liu, G. Aivazian, A. Jones, Z.Y. Fei, W.G. Zhu, D. Xiao, W. Yao, D. Cobden, X.D. Xu, Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Lee, K.F. Mak, J. Shan, Electrical control of the valley hall effect in bilayer MoS2 transistors. Nat. Nanotech. 11, 421–425 (2016)CrossRefGoogle Scholar
  12. 12.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRefGoogle Scholar
  13. 13.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Lu, X. Luo, J. Zhang, S.Y. Quek, Q.H. Xiong, Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 9, 3559–3597 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Qian, J. Liu, L. Fu, J. Li, Quantum spin hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011)CrossRefGoogle Scholar
  17. 17.
    X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Lu, M.I.B. Utama, J. Lin, X. Luo, Y. Zhao, J. Zhang, S.T. Pantelides, W. Zhou, S.Y. Quek, Q.H. Xiong, Rapid and nondestructive identification of polytypism and stacking sequences in few-layer molybdenum diselenide by Raman spectroscopy. Adv. Mater. 27, 4502–4508 (2015)CrossRefGoogle Scholar
  19. 19.
    R. Suzuki, M. Sakano, Y.J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, Y. Iwasa, Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. Nat. Nanotech. 9, 611–617 (2014)CrossRefGoogle Scholar
  20. 20.
    D.H. Keum, S. Cho, J.H. Kim, D.-H. Choe, H.-J. Sung, M. Kan, H. Kang, J.-Y. Hwang, S.W. Kim, H. Yang, K.J. Chang, Y.H. Lee, Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–U144 (2015)CrossRefGoogle Scholar
  21. 21.
    Q.J. Song, Q.H. Tan, X. Zhang, J.B. Wu, B.W. Sheng, Y. Wan, X.Q. Wang, L. Dai, P.H. Tan, Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe2. Phys. Rev. B 93, 115409 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Froehlicher, E. Lorchat, F. Fernique, C. Joshi, A. Molina-Sanchez, L. Wirtz, S. Berciaud, Unified description of the optical phonon modes in N-layer MoTe2. Nano Lett. 15, 6481–6489 (2015)CrossRefGoogle Scholar
  23. 23.
    C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014)CrossRefGoogle Scholar
  24. 24.
    Y. Kim, Y.I. Jhon, J. Park, J.H. Kim, S. Lee, Y.M. Jhon, Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe2. Nanoscale 8, 2309–2316 (2016)CrossRefGoogle Scholar
  25. 25.
    Y.C. Jiang, J. Gao, L. Wang, Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Sci. Rep. 6, 19624 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q.H. Xiong, Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 13, 1007–1015 (2013)CrossRefGoogle Scholar
  27. 27.
    N. Wakabayashi, H.G. Smith, R.M. Nicklow, Lattice-dynamics of hexagonal MoS2 studied by neutron-scattering. Phys. Rev. B 12, 659–663 (1975)CrossRefGoogle Scholar
  28. 28.
    A. Molina-Sanchez, L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011)CrossRefGoogle Scholar
  29. 29.
    J.L. Verble, T.J. Wieting, Lattice mode degeneracy in MoS2 and other layer compounds. Phys. Rev. Lett. 25, 362 (1970)CrossRefGoogle Scholar
  30. 30.
    P.N. Ghosh, C.R. Maiti, Interlayer force and Davydov splitting in 2H-MoS2. Phys. Rev. B 28, 2237–2239 (1983)CrossRefGoogle Scholar
  31. 31.
    T.J. Wieting, J.L. Verble, Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 3, 4286 (1971)CrossRefGoogle Scholar
  32. 32.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010)CrossRefGoogle Scholar
  33. 33.
    X. Luo, Y. Zhao, J. Zhang, Q. Xiong, S.Y. Quek, Anomalous frequency trends in MoS2 thin films attributed to surface effects. Phys. Rev. B 88, 075320 (2013)CrossRefGoogle Scholar
  34. 34.
    H. Zeng, B. Zhu, K. Liu, J. Fan, X. Cui, Q.M. Zhang, Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films. Phys. Rev. B 86, 241301(R) (2012)CrossRefGoogle Scholar
  35. 35.
    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)CrossRefGoogle Scholar
  36. 36.
    W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, M. Toh, X. Zhang, C. Kloc, P.H. Tan, G. Eda, Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5, 9677–9683 (2013)CrossRefGoogle Scholar
  37. 37.
    P. Tonndorf, R. Schmidt, P. Boettger, X. Zhang, J. Boerner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R.T. Zahn, S.M. de Vasconcellos, R. Bratschitsch, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 21, 4908–4916 (2013)CrossRefGoogle Scholar
  38. 38.
    J.-H. Fan, P. Gao, A.-M. Zhang, B.-R. Zhu, H.-L. Zeng, X.-D. Cui, R. He, Q.-M. Zhang, Resonance Raman scattering in bulk 2H-MX2 (M = Mo, W; X = S, Se) and monolayer MoS2. J. Appl. Phys. 115, 053527 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Richter, Z.P. Wang, L. Ley, The one phonon Raman-spectrum in microcrystalline silicon. Solid State Commun. 39, 625–629 (1981)CrossRefGoogle Scholar
  40. 40.
    R.P. Wang, G.W. Zhou, Y.L. Liu, S.H. Pan, H.Z. Zhang, D.P. Yu, Z. Zhang, Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Phys. Rev. B 61, 16827–16832 (2000)CrossRefGoogle Scholar
  41. 41.
    K.W. Adu, H.R. Gutierrez, U.J. Kim, P.C. Eklund, Inhomogeneous laser heating and phonon confinement in silicon nanowires: a micro-Raman scattering study. Phys. Rev. B 73, 155333 (2006)CrossRefGoogle Scholar
  42. 42.
    K.W. Adu, Q. Xiong, H.R. Gutierrez, G. Chen, P.C. Eklund, Raman scattering as a probe of phonon confinement and surface optical modes in semiconducting nanowires. Appl. Phys. A Mater. Sci. Process. 85, 287–297 (2006)CrossRefGoogle Scholar
  43. 43.
    Y. Lin, X. Ling, L. Yu, S. Huang, A.L. Hsu, Y.-H. Lee, J. Kong, M.S. Dressehaus, T. Palacios, Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 14, 5569–5576 (2014)CrossRefGoogle Scholar
  44. 44.
    A. Molina-Sanchez, K. Hummer, L. Wirtz, Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70, 554–586 (2015)CrossRefGoogle Scholar
  45. 45.
    J. Yan, J. Xia, X. Wang, L. Liu, J.-L. Kuo, B.K. Tay, S. Chen, W. Zhou, Z. Liu, Z.X. Shen, Stacking-dependent interlayer coupling in Trilayer MoS2 with broken inversion symmetry. Nano Lett. 15, 8155–8161 (2015)CrossRefGoogle Scholar
  46. 46.
    J.-U. Lee, K. Kim, S. Han, G.H. Ryu, Z. Lee, H. Cheong, Raman signatures of polytypism in molybdenum disulfide. ACS Nano 10, 1948–1953 (2016)CrossRefGoogle Scholar
  47. 47.
    A.A. Puretzky, L. Liang, X. Li, K. Xiao, K. Wang, M. Mahjouri-Samani, L. Basile, J.C. Idrobo, B.G. Sumpter, V. Meunier, D.B. Geohegan, Low-frequency Raman fingerprints of two-dimensional metal dichalcogenide layer stacking configurations. ACS Nano 9, 6333–6342 (2015)CrossRefGoogle Scholar
  48. 48.
    X.-F. Qiao, J.-B. Wu, L. Zhou, J. Qiao, W. Shi, T. Chen, X. Zhang, J. Zhang, W. Ji, P.-H. Tan, Polytypism and unexpected strong interlayer coupling in two-dimensional layered ReS2. Nanoscale 8, 8324–8332 (2016)CrossRefGoogle Scholar
  49. 49.
    R. He, J.-A. Yan, Z. Yin, Z. Ye, G. Ye, J. Cheng, J. Li, C.H. Lui, Coupling and stacking order of ReS2 atomic layers revealed by ultralow-frequency Raman spectroscopy. Nano Lett. 16, 1404–1409 (2016)CrossRefGoogle Scholar
  50. 50.
    Y. Yoo, Z.P. Degregorio, Y. Su, S.J. Koester, J.E. Johns, In-plane 2H-1T’ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 29, 1605461 (2017)CrossRefGoogle Scholar
  51. 51.
    J.J. Wu, M.J. Liu, K. Chatterjee, K.P. Hackenberg, J.F. Shen, X.L. Zou, Y. Yan, J. Gu, Y.C. Yang, J. Lou, P.M. Ajayan, Exfoliated 2D transition metal disulfides for enhanced electrocatalysis of oxygen evolution reaction in acidic medium. Adv. Mater. Interfaces 3, 1500669 (2016)CrossRefGoogle Scholar
  52. 52.
    B.R. Carvalho, L.M. Malard, J.M. Alves, C. Fantini, M.A. Pimenta, Symmetry-dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 114, 136403 (2015)CrossRefGoogle Scholar
  53. 53.
    L. Sun, J. Yan, D. Zhan, L. Liu, H. Hu, H. Li, B.K. Tay, J.-L. Kuo, C.-C. Huang, D.W. Hewak, P.S. Lee, Z.X. Shen, Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 111, 126801 (2013)CrossRefGoogle Scholar
  54. 54.
    Y. Wang, C. Cong, C. Qiu, T. Yu, Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9, 2857–2861 (2013)CrossRefGoogle Scholar
  55. 55.
    B. Chakraborty, A. Bera, D.V.S. Muthu, S. Bhowmick, U.V. Waghmare, A.K. Sood, Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B 85, 161403(R) (2012)CrossRefGoogle Scholar
  56. 56.
    R.S. Yan, J.R. Simpson, S. Bertolazzi, J. Brivio, M. Watson, X.F. Wu, A. Kis, T.F. Luo, A.R.H. Walker, H.G. Xing, Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano 8, 986–993 (2014)CrossRefGoogle Scholar
  57. 57.
    S. Sahoo, A.P.S. Gaur, M. Ahmadi, M.J.F. Guinel, R.S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117, 9042–9047 (2013)CrossRefGoogle Scholar
  58. 58.
    N.A. Lanzillo, A.G. Birdwell, M. Amani, F.J. Crowne, P.B. Shah, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, S.K. Nayak, T.P. O’Regan, Temperature-dependent phonon shifts in monolayer MoS2. Appl. Phys. Lett. 103, 093102 (2013)CrossRefGoogle Scholar
  59. 59.
    A. Taube, J. Judek, C. Jastrzebski, A. Duzynska, K. Switkowski, M. Zdrojek, Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer. ACS Appl. Mater. Interfaces 6, 8959–8963 (2014)CrossRefGoogle Scholar
  60. 60.
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  61. 61.
    S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses. Appl. Phys. Lett. 100, 013106 (2012)CrossRefGoogle Scholar
  62. 62.
    C.R. Zhu, G. Wang, B.L. Liu, X. Marie, X.F. Qiao, X. Zhang, X.X. Wu, H. Fan, P.H. Tan, T. Amand, B. Urbaszek, Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88, 121301(R) (2013)CrossRefGoogle Scholar
  63. 63.
    C.-H. Chang, X. Fan, S.-H. Lin, J.-L. Kuo, Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain. Phys. Rev. B 88, 125120 (2013)CrossRefGoogle Scholar
  64. 64.
    M. Thripuranthaka, D.J. Late, Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 6, 1158–1163 (2014)CrossRefGoogle Scholar
  65. 65.
    Y.Q. Cai, J.H. Lan, G. Zhang, Y.W. Zhang, Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Phys. Rev. B 89, 035438 (2014)CrossRefGoogle Scholar
  66. 66.
    X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011)CrossRefGoogle Scholar
  67. 67.
    M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)CrossRefGoogle Scholar
  68. 68.
    J.E. Moore, The birth of topological insulators. Nature 464, 194–198 (2010)CrossRefGoogle Scholar
  69. 69.
    H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009)CrossRefGoogle Scholar
  70. 70.
    Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen, Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009)CrossRefGoogle Scholar
  71. 71.
    A. Soni, Y. Zhao, L. Yu, M.K.K. Aik, M.S. Dresselhaus, Q. Xiong, Enhanced thermoelectric properties of solution grown Bi2Te3 −xSex Nanoplatelet composites. Nano Lett. 12, 1203–1209 (2012)CrossRefGoogle Scholar
  72. 72.
    J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q.H. Xiong, Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 11, 2407–2414 (2011)CrossRefGoogle Scholar
  73. 73.
    G.L. Frey, R. Tenne, M.J. Matthews, M.S. Dresselhaus, G. Dresselhaus, Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883–2892 (1999)CrossRefGoogle Scholar
  74. 74.
    Q.-C. Sun, D. Mazumdar, L. Yadgarov, R. Rosentsveig, R. Tenne, J.L. Musfeldt, Spectroscopic determination of phonon lifetimes in rhenium-doped MoS2 nanoparticles. Nano Lett. 13, 2803–2808 (2013)CrossRefGoogle Scholar
  75. 75.
    C. Wang, X. Zhu, L. Nilsson, J. Wen, G. Wang, X. Shan, Q. Zhang, S. Zhang, J. Jia, Q. Xue, In situ Raman spectroscopy of topological insulator Bi2Te3 films with varying thickness. Nano Res. 6, 688–692 (2013)CrossRefGoogle Scholar
  76. 76.
    Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S.Y. Quek, Q. Xiong, Interlayer vibrational modes in few-quintuple-layer Bi2Te3 and Bi2Se3 two-dimensional crystals: Raman spectroscopy and first-principles studies. Phys. Rev. B 90, 245428 (2014)CrossRefGoogle Scholar
  77. 77.
    A.D. Laforge, A. Frenzel, B.C. Pursley, T. Lin, X. Liu, J. Shi, D.N. Basov, Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Phys. Rev. B 81, 125120 (2010)CrossRefGoogle Scholar
  78. 78.
    P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani, S. Lupi, Observation of Dirac plasmons in a topological insulator. Nat. Nanotech. 8, 556–560 (2013)CrossRefGoogle Scholar
  79. 79.
    C. Chen, Z. Xie, Y. Feng, H. Yi, A. Liang, S. He, D. Mou, J. He, Y. Peng, X. Liu, Y. Liu, L. Zhao, G. Liu, X. Dong, J. Zhang, L. Yu, X. Wang, Q. Peng, Z. Wang, S. Zhang, F. Yang, C. Chen, Z. Xu, X.J. Zhou, Tunable Dirac fermion dynamics in topological insulators. Sci. Rep. 3, 2411 (2013)CrossRefGoogle Scholar
  80. 80.
    M.V. Costache, I. Neumann, J.F. Sierra, V. Marinova, M.M. Gospodinov, S. Roche, S.O. Valenzuela, Fingerprints of inelastic transport at the surface of the topological insulator Bi2Se3: role of Electron-phonon coupling. Phys. Rev. Lett. 112, 086601 (2014)CrossRefGoogle Scholar
  81. 81.
    C.H. Zhang, Z.P. Peng, Z. Li, L.G. Yu, K.A. Khor, Q.H. Xiong, Controlled growth of bismuth antimony telluride BixSb2 − xTe3 nanoplatelets and their bulk thermoelectric nanocomposites. Nano Energy 15, 688–696 (2015)CrossRefGoogle Scholar
  82. 82.
    M. Zhang, J.X. Wu, Y.M. Zhu, D.O. Dumcenco, J.H. Hong, N.N. Mao, S.B. Deng, Y.F. Chen, Y.L. Yang, C.H. Jin, S.H. Chaki, Y.S. Huang, J. Zhang, L.M. Xie, Two-dimensional molybdenum tungsten diselenide alloys: photoluminescence, Raman scattering, and electrical transport. ACS Nano 8, 7130–7137 (2014)CrossRefGoogle Scholar
  83. 83.
    S. Tongay, D.S. Narang, J. Kang, W. Fan, C. Ko, A.V. Luce, K.X. Wang, J. Suh, K.D. Patel, V.M. Pathak, J. Li, J. Wu, Two-dimensional semiconductor alloys: monolayer Mo1 − xWxSe2. Appl. Phys. Lett. 104, 012101 (2014)CrossRefGoogle Scholar
  84. 84.
    Y.F. Chen, W. Wen, Y.M. Zhu, N.N. Mao, Q.L. Feng, M. Zhang, H.P. Hsu, J. Zhang, Y.S. Huang, L.M. Xie, Temperature-dependent photoluminescence emission and Raman scattering from Mo1 − xWxS2 monolayers. Nanotechnology 27, 445705 (2016)CrossRefGoogle Scholar
  85. 85.
    X.F. Qiao, X.L. Li, X. Zhang, W. Shi, J.B. Wu, T. Chen, P.H. Tan, Substrate-free layer-number identification of two-dimensional materials: a case of Mo0.5W0.5S2 alloy. Appl. Phys. Lett. 106, 223102 (2015)CrossRefGoogle Scholar
  86. 86.
    S. Zheng, L. Sun, T. Yin, A.M. Dubrovkin, F. Liu, Z. Liu, Z.X. Shen, H.J. Fan, Monolayers of WxMo1 − xS2 alloy heterostructure with in-plane composition variations. Appl. Phys. Lett. 106, 063113 (2015)CrossRefGoogle Scholar
  87. 87.
    Q.L. Feng, N.N. Mao, J.X. Wu, H. Xu, C.M. Wang, J. Zhang, L.M. Xie, Growth of MoS2(1 − x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9, 7450–7455 (2015)CrossRefGoogle Scholar
  88. 88.
    W.T. Zhang, X.D. Li, T.T. Jiang, J.L.Q. Song, Y. Lin, L.X. Zhu, X.L. Xu, CVD synthesis of Mo(1 − x)WxS2 and MoS2(1 − x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7, 13554–13560 (2015)CrossRefGoogle Scholar
  89. 89.
    Y.F. Chen, D.O. Dumcenco, Y.M. Zhu, X. Zhang, N.N. Mao, Q.L. Feng, M. Zhang, J. Zhang, P.H. Tan, Y.S. Huang, L.M. Xie, Composition-dependent Raman modes of Mo1 − xWxS2 monolayer alloys. Nanoscale 6, 2833–2839 (2014)CrossRefGoogle Scholar
  90. 90.
    X. Lu, M.I.B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S.T. Pantelides, J. Wang, Z. Dong, Z. Liu, W. Zhou, Q.H. Xiong, Large-area synthesis of monolayer and few-layer MoSe2 films on silicon substrates. Nano Lett. 14, 2419–2425 (2014)CrossRefGoogle Scholar
  91. 91.
    X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, S.Y. Quek, Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Phys. Rev. B 88, 195313 (2013)CrossRefGoogle Scholar
  92. 92.
    J.A. Wilson, F.J. Di Salvo, S. Mahajan, Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides (reprinted from Adv. Phys. 1974, 32, 882). Adv. Phys. 50, 1171–1248 (2001)CrossRefGoogle Scholar
  93. 93.
    X.X. Xi, L. Zhao, Z.F. Wang, H. Berger, L. Forro, J. Shan, K.F. Mak, Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotech. 10, 765–770 (2015)CrossRefGoogle Scholar
  94. 94.
    Y. Wu, M. An, R. Xiong, J. Shi, Q.M. Zhang, Raman scattering spectra in the normal phase of 2H-NbSe2. J. Phys. D. Appl. Phys. 41, 175408 (2008)CrossRefGoogle Scholar
  95. 95.
    J.C. Tsang, J.E. Smith, M.W. Shafer, Raman-spectroscopy of soft modes at charge-density-wave phase-transition in 2h-NbSe2. Phys. Rev. Lett. 37, 1407–1410 (1976)CrossRefGoogle Scholar
  96. 96.
    A. Mialitsin, Fano line shape and anti-crossing of Raman active E2g peaks in the charge density wave state of NbSe2. J. Phys. Chem. Solids 72, 568–571 (2011)CrossRefGoogle Scholar
  97. 97.
    M.A. Measson, Y. Gallais, M. Cazayous, B. Clair, P. Rodiere, L. Cario, A. Sacuto, Amplitude Higgs mode in the 2H-NbSe2 superconductor. Phys. Rev. B 89, 060503(R) (2014)CrossRefGoogle Scholar
  98. 98.
    J.F. Scott, Soft-mode spectroscopy: experimental studies of structural phase-transitions. Rev. Mod. Phys. 46, 83–128 (1974)CrossRefGoogle Scholar
  99. 99.
    D.E. Moncton, J.D. Axe, F.J. Disalvo, Study of superlattice formation in 2H-NbSe2 and 2H-TaSe2 by neutron-scattering. Phys. Rev. Lett. 34, 734–737 (1975)CrossRefGoogle Scholar
  100. 100.
    R. Arenal, A.C. Ferrari, S. Reich, L. Wirtz, J.Y. Mevellec, S. Lefrant, A. Rubio, A. Loiseau, Raman spectroscopy of single-wall boron nitride nanotubes. Nano Lett. 6, 1812–1816 (2006)CrossRefGoogle Scholar
  101. 101.
    R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011)CrossRefGoogle Scholar
  102. 102.
    D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang, C.Y. Zhi, Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)CrossRefGoogle Scholar
  103. 103.
    C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z.Q. Qiu, R.J. Cava, S.G. Louie, J. Xia, X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017)CrossRefGoogle Scholar
  104. 104.
    B. Huang, G. Clark, E. Navarro-Moratalla, D.R. Klein, R. Cheng, K.L. Seyler, D. Zhong, E. Schmidgall, M.A. McGuire, D.H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X.D. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017)CrossRefGoogle Scholar
  105. 105.
    X.Z. Wang, K.Z. Du, Y.Y.F. Liu, P. Hu, J. Zhang, Q. Zhang, M.H.S. Owen, X. Lu, C.K. Gan, P. Sengupta, C. Kloc, Q.H. Xiong, Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Materials 3, 031009 (2016)CrossRefGoogle Scholar
  106. 106.
    J.U. Lee, S. Lee, J.H. Ryoo, S. Kang, T.Y. Kim, P. Kim, C.H. Park, J.G. Park, H. Cheong, Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016)CrossRefGoogle Scholar
  107. 107.
    T. Sekine, M. Jouanne, C. Julien, M. Balkanski, Light-scattering study of dynamic behavior of antiferromagnetic spins in the layered magnetic semiconductor FePS3. Phys. Rev. B 42, 8382–8393 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Current Address: Department of PhysicsEmory UniversityAtlantaUSA
  3. 3.State Key Laboratory of Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  4. 4.College of Materials Science and Opto-Electronic TechnologyCAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of SciencesBeijingChina
  5. 5.MajuLabCNRS-UNS-NUS-NTU International Joint Research UnitSingaporeSingapore

Personalised recommendations