Advertisement

Ultralow-Frequency Raman Spectroscopy of Two-dimensional Materials

  • Miao-Ling Lin
  • Ping-Heng Tan
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 276)

Abstract

In two-dimensional materials (2DMs), atoms within one layer (in-plane) are joined by covalent bonds, whereas van der Waals (vdW) interactions keep the layers together. Raman spectroscopy is a powerful tool for measuring the lattice vibrational modes in 2DMs, including the intralayer and interlayer vibrations, and has shown great potential for the characterizations of the layer number, interlayer coupling and layer-stacking configurations in 2DMs via the ultralow-frequency (ULF) interlayer vibrational modes. This chapter begins with an introduction of how the monolayer 2DMs stack to assemble a large family of two-dimensional systems (Section 10.1), which are likely to exhibit modified interlayer coupling and thus various ULF mode behaviours. In sequence, Section 10.2 provides a detailed description of the physical origins of the interlayer vibrations and the linear chain model (LCM) to depict their layer-number dependent frequencies. Subsequently, two popular Raman setups are introduced to perform the ULF modes measurements (Section 10.3). Then, we provide a review of the ULF Raman spectroscopy of various types of 2DMs, including: (1) layer-number dependent (Section 10.4.1) and (2) stacking-order dependent (Section 10.4.2) ULF Raman spectroscopy in isotropic 2DMs; (3) ULF Raman spectroscopy in anisotropic 2DMs(Section 10.4.3); and (4) ULF Raman modes in twisted 2DMs (Section 10.4.4) and heterostructures (Section 10.4.5).

Notes

Acknowledgements

We acknowledge support from the National Key Research and Development Program of China (Grant No. 2016YFA0301204), the National Natural Science Foundation of China (Grant No. 11474277, 11874350 and 11434010), and the Beijing Municipal Science and Technology Commission.

References

  1. 1.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA 102(30), 10451 (2005)CrossRefGoogle Scholar
  2. 2.
    X. Zhang, Q.H. Tan, J.B. Wu, W. Shi, P.H. Tan, Nanoscale 8, 6435 (2016)CrossRefGoogle Scholar
  3. 3.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6(183), 183 (2007)CrossRefGoogle Scholar
  4. 4.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012)CrossRefGoogle Scholar
  5. 5.
    A.K. Geim, I.V. Grigorieva, Nature 499(7459), 419 (2013)CrossRefGoogle Scholar
  6. 6.
    X. Zhang, X.F. Qiao, W. Shi, J.B. Wu, D.S. Jiang, P.H. Tan, Chem. Soc. Rev. 44, 2757 (2015)CrossRefGoogle Scholar
  7. 7.
    K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353(6298), 9439 (2016)CrossRefGoogle Scholar
  8. 8.
    S.N. Shirodkar, U.V. Waghmare, Phys. Rev. Lett. 112, 157601 (2014)CrossRefGoogle Scholar
  9. 9.
    X.L. Li, W.P. Han, J.B. Wu, X.F. Qiao, J. Zhang, P.H. Tan, Adv. Funct. Mater. 27, 1604468 (2017)CrossRefGoogle Scholar
  10. 10.
    L. Liang, J. Zhang, B.G. Sumpter, Q. Tan, P.H. Tan, V. Meunier, ACS Nano 11(12), 11777 (2017)CrossRefGoogle Scholar
  11. 11.
    J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, P.H. Tan, Chem. Soc. Rev. 47, 1822 (2018)CrossRefGoogle Scholar
  12. 12.
    V. Carozo, C.M. Almeida, E.H.M. Ferreira, L.G. Cançado, C.A. Achete, A. Jorio, Nano Lett. 11(11), 4527 (2011)CrossRefGoogle Scholar
  13. 13.
    J.B. Wu, X. Zhang, M. Ijäs, W.P. Han, X.F. Qiao, X.L. Li, D.S. Jiang, A.C. Ferrari, P.H. Tan, Nat. Commun. 5, 5309 (2014)CrossRefGoogle Scholar
  14. 14.
    J.B. Wu, Z.X. Hu, X. Zhang, W.P. Han, Y. Lu, W. Shi, X.F. Qiao, M. Ijiäs, S. Milana, W. Ji, A.C. Ferrari, P.H. Tan, ACS Nano 9(7), 7440 (2015)CrossRefGoogle Scholar
  15. 15.
    K. Liu, L. Zhang, T. Cao, C. Jin, D. Qiu, Q. Zhou, A. Zettl, P. Yang, S.G. Louie, F. Wang, Nat. Commun. 5, 4966 (2014)CrossRefGoogle Scholar
  16. 16.
    A.A. Puretzky, L. Liang, X. Li, K. Xiao, B.G. Sumpter, V. Meunier, D.B. Geohegan, ACS Nano 10(2), 2736 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Huang, L. Liang, X. Ling, A.A. Puretzky, D.B. Geohegan, B.G. Sumpter, J. Kong, V. Meunier, M.S. Dresselhaus, Nano Lett. 16(2), 1435 (2016)CrossRefGoogle Scholar
  18. 18.
    K.S. Novoselov, A.H.C. Neto, Phys. Scripta 2012(146), 014006 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Gong, J. Lin, X. Wang, G. JShi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, P.M. Ajayan, Nat. Mater. 13(12), 1135 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Li, J.B. Wu, F. Ran, M.L. Lin, X.L. Liu, Y. Zhao, X. Lu, Q. Xiong, J. Zhang, W. Huang, H. Zhang, P.H. Tan, ACS Nano 11, 11714 (2017)CrossRefGoogle Scholar
  21. 21.
    P.H. Tan, W.P. Han, W.J. Zhao, Z.H. Wu, K. Chang, H. Wang, Y.F. Wang, N. Bonini, N. Marzari, N. Pugno, G. Savini, A. Lombardo, A.C. Ferrari, Nat. Mater. 11, 294 (2012)CrossRefGoogle Scholar
  22. 22.
    J.L. Feldman, J. Phys. Chem. Solids 42(11), 1029 (1981)CrossRefGoogle Scholar
  23. 23.
    M. Gatulle, M. Fischer, A. Chevy, Phys. Status Solidi B 119(1), 327 (1983)CrossRefGoogle Scholar
  24. 24.
    R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5, 4951 (1972)CrossRefGoogle Scholar
  25. 25.
    B. Yang, M.D. Morris, H. Owen, Appl. Spectrosc. 45(9), 1533 (1991)CrossRefGoogle Scholar
  26. 26.
    P.J. Horoyski, M.L.W. Thewalt, Appl. Spectrosc. 48(7), 843 (1994)CrossRefGoogle Scholar
  27. 27.
    S.G. Belostotskiy, Q. Wang, V.M. Donnelly, D.J. Economou, N. Sadeghi, Appl. Phys. Lett. 89(25) (2006)CrossRefGoogle Scholar
  28. 28.
    H. Okajima, H.O. Hamaguchi, Appl. Spectrosc. 63(8), 958 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Moser, F. Havermeyer, Appl. Phys. B 95(3), 597 (2009)CrossRefGoogle Scholar
  30. 30.
    S. Lebedkin, C. Blum, N. Stürzl, F. Hennrich, M.M. Kappes, Rev. Sci. Instrum. 82(1), 013705 (2011)CrossRefGoogle Scholar
  31. 31.
    A.F.H. van Gessel, E.A.D. Carbone, P.J. Bruggeman, J.J.A.M. van der Mullen, Plasma Sources Sci.and T. 21(1), 015003 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Verble, T. Wietling, P. Reed, Solid State Commun. 11(8), 941 (1972)CrossRefGoogle Scholar
  33. 33.
    R.J. Nemanich, G. Lucovsky, S.A. Solin, in Proceedings of the International Conference on Lattice Dynamics, Paris, 1977, pp. 619–621Google Scholar
  34. 34.
    T. Sekine, T. Nakashizu, K. Toyoda, K. Uchinokura, E. Matsuura, Solid State Commun. 35(4), 371 (1980)CrossRefGoogle Scholar
  35. 35.
    S. Sugai, T. Ueda, Phys. Rev. B 26, 6554 (1982)CrossRefGoogle Scholar
  36. 36.
    P.H. Tan, D. Bougeard, G. Abstreiter, K. Brunner, Appl. Phys. Lett. 84(14), 2632 (2004)CrossRefGoogle Scholar
  37. 37.
    Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus, Q. Xiong, Nano Lett. 13(3), 1007 (2013)CrossRefGoogle Scholar
  38. 38.
    G. Plechinger, S. Heydrich, J. Eroms, D. Weiss, C. Schller, T. Korn, Appl. Phys. Lett. 101(10), 101906 (2012)CrossRefGoogle Scholar
  39. 39.
    H. Zeng, B. Zhu, K. Liu, J. Fan, X. Cui, Q.M. Zhang, Phys. Rev. B 86, 241301 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Boukhicha, M. Calandra, M.A. Measson, O. Lancry, A. Shukla, Phys. Rev. B 87, 195316 (2013)CrossRefGoogle Scholar
  41. 41.
    Y. Zhao, X. Luo, J. Zhang, J. Wu, X. Bai, M. Wang, J. Jia, H. Peng, Z. Liu, S.Y. Quek, Q. Xiong, Phys. Rev. B 90, 245428 (2014)CrossRefGoogle Scholar
  42. 42.
    C.H. Lui, Z. Ye, C. Keiser, E.B. Barros, R. He, Appl. Phys. Lett. 106(4), 041904 (2015)CrossRefGoogle Scholar
  43. 43.
    P.H. Tan, J.B. Wu, W.P. Han, W.J. Zhao, X. Zhang, H. Wang, Y.F. Wang, Phys. Rev. B 89, 235404 (2014)CrossRefGoogle Scholar
  44. 44.
    X. Zhang, W.P. Han, J.B. Wu, S. Milana, Y. Lu, Q.Q. Li, A.C. Ferrari, P.H. Tan, Phys. Rev. B 87, 115413 (2013)CrossRefGoogle Scholar
  45. 45.
    H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, H. Wang, Nano Res. 8(11), 3651 (2015)CrossRefGoogle Scholar
  46. 46.
    J.B. Wu, H. Wang, X.L. Li, H. Peng, P.H. Tan, Carbon 110, 225 (2016)CrossRefGoogle Scholar
  47. 47.
    X.F. Qiao, J.B. Wu, L. Zhou, J. Qiao, W. Shi, T. Chen, X. Zhang, J. Zhang, W. Ji, P.H. Tan, Nanoscale 8, 8324 (2016)CrossRefGoogle Scholar
  48. 48.
    M. Miscuglio, M.L. Lin, F. Di Stasio, P.H. Tan, R. Krahne, Nano Lett. 16(12), 7664 (2016)CrossRefGoogle Scholar
  49. 49.
    X.L. Liu, H.N. Liu, J.B. Wu, H.X. Wu, T. Zhang, W.Q. Zhao, P.H. Tan, Rev. Sci. Instrum. 88(05), 053110 (2017)CrossRefGoogle Scholar
  50. 50.
    M.L. Lin, F.R. Ran, X.F. Qiao, J.B. Wu, W. Shi, Z.H. Zhang, X.Z. Xu, K.H. Liu, H. Li, P.H. Tan, Rev. Sci. Instrum. 87(5), 053122 (2016)CrossRefGoogle Scholar
  51. 51.
    Z. Li, K.F. Mak, E. Cappelluti, T.F. Heinz, Nat. Phys. 7(12), 944 (2011)CrossRefGoogle Scholar
  52. 52.
    D. Xiao, G.B. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)CrossRefGoogle Scholar
  53. 53.
    J. Yan, J. Xia, X. Wang, L. Liu, J.L. Kuo, B.K. Tay, S. Chen, W. Zhou, Z. Liu, Z.X. Shen, Nano Lett. 15(12), 8155 (2015)CrossRefGoogle Scholar
  54. 54.
    T. Ritschel, J. Trinckauf, K. Koepernik, B. Buchner, M.v. Zimmermann, H. Berger, Y.I. Joe, P. Abbamonte, J. Geck, Nat. Phys. 11(4), 328 (2015)Google Scholar
  55. 55.
    X. Xu, W. Yao, D. Xiao, T.F. Heinz, Nat. Phys. 10(5), 343 (2014)CrossRefGoogle Scholar
  56. 56.
    X. Luo, Y. Zhao, J. Zhang, S.T. Pantelides, W. Zhou, S. Ying Quek, Q. Xiong, Adv. Mater. 27, 4502 (2015)CrossRefGoogle Scholar
  57. 57.
    J.U. Lee, K. Kim, S. Han, G.H. Ryu, Z. Lee, H. Cheong, ACS Nano 10(2), 1948 (2016)CrossRefGoogle Scholar
  58. 58.
    X. Zhang, W.P. Han, X.F. Qiao, Q.H. Tan, Y.F. Wang, J. Zhang, P.H. Tan, Carbon 99, 118 (2016)CrossRefGoogle Scholar
  59. 59.
    X. Luo, X. Lu, C. Cong, T. Yu, Q. Xiong, S. Ying Quek, Sci. Rep. 5, 14565 (2015)CrossRefGoogle Scholar
  60. 60.
    X. Lu, M.I.B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S.T. Pantelides, J. Wang, Z. Dong, Z. Liu, W. Zhou, Q. Xiong, Nano Lett. 14(5), 2419 (2014)CrossRefGoogle Scholar
  61. 61.
    A.A. Puretzky, L. Liang, X. Li, K. Xiao, K. Wang, M. Mahjouri-Samani, L. Basile, J.C. Idrobo, B.G. Sumpter, V. Meunier, D.B. Geohegan, ACS Nano 9(6), 6333 (2015)CrossRefGoogle Scholar
  62. 62.
    L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Nat. Nanotechnol. 9(5), 372 (2014)CrossRefGoogle Scholar
  63. 63.
    F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam, Nat. Photon. 8(12), 899 (2014)CrossRefGoogle Scholar
  64. 64.
    J. Qiao, X. Kong, Z.X. Hu, F. Yang, W. Ji, Nat. Commun. 5(4475), 4475 (2014)CrossRefGoogle Scholar
  65. 65.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508(7496), 373 (2014)CrossRefGoogle Scholar
  66. 66.
    X. Ling, L. Liang, S. Huang, A.A. Puretzky, D.B. Geohegan, B.G. Sumpter, J. Kong, V. Meunier, M.S. Dresselhaus, Nano Lett. 15(6), 4080 (2015)CrossRefGoogle Scholar
  67. 67.
    I. Pletikosić, M.N. Ali, A.V. Fedorov, R.J. Cava, T. Valla, Phys. Rev. Lett. 113, 216601 (2014)CrossRefGoogle Scholar
  68. 68.
    M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Nature 514(7521), 205 (2014)CrossRefGoogle Scholar
  69. 69.
    M. Kertesz, R. Hoffmann, J. Am. Chem. Soc. 106(12), 3453 (1984)CrossRefGoogle Scholar
  70. 70.
    C. Cong, T. Yu, Nat. Commun. 5, 4709 (2014)CrossRefGoogle Scholar
  71. 71.
    T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y.R. Shen, W.T. Liu, S. Wu, Nat. Nanotechnol. 9, 825 (2014)CrossRefGoogle Scholar
  72. 72.
    M.P. Levendorf, C.J. Kim, L. Brown, P.Y. Huang, R.W. Havener, D.A. Muller, J. Park, Nature 488, 627 (2012)CrossRefGoogle Scholar
  73. 73.
    Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, P.M. Ajayan, Nano Lett. 15(9), 6135 (2015)CrossRefGoogle Scholar
  74. 74.
    Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K.P. Hackenberg, A. Babakhani, J.C. Idrobo, R. Vajtai, R. Vajtai, P.M. Ajayan, Nat. Nanotechnol. 8, 119 (2013)CrossRefGoogle Scholar
  75. 75.
    C.H. Lui, Z. Ye, C. Ji, K.C. Chiu, C.T. Chou, T.I. Andersen, C. Means-Shively, H. Anderson, J.M. Wu, T. Kidd, Y.H. Lee, R. He, Phys. Rev. B 91, 165403 (2015)CrossRefGoogle Scholar
  76. 76.
    W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan, Nat. Nanotechnol. 8(12), 952 (2013)CrossRefGoogle Scholar
  77. 77.
    M. Massicotte, P. Schmidt, F. Vialla, K.G. Schädler, A. Reserbat-Plantey, K. Watanabe, T. Taniguchi, K.J. Tielrooij, F.H.L. Koppens, Nat. Nanotechnol. 11(1), 42 (2015)CrossRefGoogle Scholar
  78. 78.
    H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J.S. Kang, H.A. Bechtel, S.B. Desai, F. Kronast, A.A. Unal, G. Conti, C. Conlon, G.K. Palsson, M.C. Martin, A.M. Minor, C.S. Fadley, E. Yablonovitch, R. Maboudian, A. Javey, Proc. Natl. Acad. Sci. USA 111(17), 6198 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Superlattices and Microstructures, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  2. 2.College of Materials Science and Opto-Electronic TechnologyUniversity of Chinese Academy of ScienceBeijingChina
  3. 3.Institute of Semiconductors, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations