Segmentation of Optic Disc and Cup-to-Disc Ratio Quantification Based on OCT Scans

  • Menglin Wu
  • Theodore Leng
  • Luis de Sisternes
  • Daniel L. Rubin
  • Qiang ChenEmail author
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


With optical nerve head centered OCT imaging, this special region can be visualized in 3-D, enabling detailed quantification of its structure. In this chapter, an automated algorithm is presented for optic disc segmentation in 3-D spectral domain optical coherence tomography, based on which the cup-to-disc ratio an important indicator of early glaucoma can be calculated.


  1. 1.
    N.G. Strouthidis, H. Yang, B. Fortune, J.C. Downs, C.F. Burgoyne, Detection of optic nerve head neural canal opening within histomorphometric and spectral domain optical coherence tomography data sets. Invest. Ophth. Vis. Sci. 50(1), 214–223 (2009)CrossRefGoogle Scholar
  2. 2.
    J.S. Schuman, G. Wollstein, T. Farra, E. Hertzmark, A. Aydin, J.G. Fujimoto, L.A. Paunescu, Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am. J. Ophthalmol. 135(4), 504–512 (2003)CrossRefGoogle Scholar
  3. 3.
    Y.H. Kwon, M. Adix, M.B. Zimmerman, S. Piette, E.C. Greenlee, W.L. Alward, M.D. Abràmoff, Variance owing to observer, repeat imaging, and fundus camera type on cup-to-disc ratio estimates by stereo planimetry. J. Glaucoma 18(4), 305–310 (2009)CrossRefGoogle Scholar
  4. 4.
    M.D. Abràmoff, K. Lee, M. Niemeijer, W.L. Alward, E.C. Greenlee, M.K. Garvin, Y.H. Kwon, Automated segmentation of the cup and rim from spectral domain OCT of the optic nerve head. Invest. Ophth. Vis. Sci. 50(12), 5778–5784 (2009)CrossRefGoogle Scholar
  5. 5.
    J. Xu, H. Ishikawa, G. Wollstein, R.A. Bilonick, L. Kagemann, J.E. Craig, J.S. Schuman, Automated volumetric evaluation of stereoscopic disc photography. Opt. Expr. 18(11), 11347–11359 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    N.G. Strouthidis, H. Yang, J.F. Reynaud, J. Grimm, S.K. Gardiner, B. Fortune, C.F. Burgoyne, Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest. Ophth. Vis. Sci. 50(10), 4709–4718 (2009)CrossRefGoogle Scholar
  7. 7.
    Z. Hu, M.D. Abramoff, Y.H. Kwon, K. Lee, M.K. Garvin, Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head. Invest. Ophth. Vis. Sci. 51(11), 5708–5717 (2010)CrossRefGoogle Scholar
  8. 8.
    F.A. Medeiros, L.M. Zangwill, C. Bowd, R.M. Vessani, R. Susanna, R.N. Weinreb, Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 139(1), 44–55 (2005)CrossRefGoogle Scholar
  9. 9.
    A. Manassakorn, K. Nouri-Mahdavi, J. Caprioli, Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am. J. Ophthalmol. 141(1), 105–115 (2006)CrossRefGoogle Scholar
  10. 10.
    T.C. Chen, Spectral domain optical coherence tomography in glaucoma: qualitative and quantitative analysis of the optic nerve head and retinal nerve fiber layer (an AOS thesis). Trans. Am. Ophthalmol. Soc. 107, 254–281 (2009)Google Scholar
  11. 11.
    B.C. Chauhan, C.F. Burgoyne, From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change. Am. J. Ophthalmol. 156(2), 218–227 (2013)CrossRefGoogle Scholar
  12. 12.
    P. Hrynchak, N. Hutchings, D. Jones, T. Simpson, A comparison of cup-to-disc ratio measurement in normal subjects using optical coherence tomography image analysis of the optic nerve head and stereo fundus biomicroscopy. Ophthal. Physl. Opt. 24(6), 543–550 (2004)CrossRefGoogle Scholar
  13. 13.
    A. Aquino, M.E. Gegúndez-Arias, D. Marín, Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE T. Med. Imaging 29(11), 1860–1869 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Yu, E.S. Barriga, C. Agurto, S. Echegaray, M.S. Pattichis, W. Bauman, P. Soliz, Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE T. Inf. Technol. B. 16(4), 644–657 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Cheng, J. Liu, Y. Xu, F. Yin, D.W.K. Wong, N.M. Tan, T.Y. Wong, Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE T. Med. Imaging 32(6), 1019–1032 (2013)CrossRefGoogle Scholar
  16. 16.
    C. Muramatsu, T. Nakagawa, A. Sawada, Y. Hatanaka, T. Hara, T. Yamamoto, H. Fujita, Automated segmentation of optic disc region on retinal fundus photographs: comparison of contour modeling and pixel classification methods. Comput. Meth. Prog. Bio. 101(1), 23–32 (2011)CrossRefGoogle Scholar
  17. 17.
    B.J. Antony, M.D. Abràmoff, K. Lee, P. Sonkova, P. Gupta, Y. Kwon, M.K. Garvin, Automated 3D segmentation of intraretinal layers from optic nerve head optical coherence tomography images. In: Proceedings of SPIE Medical Imaging 76260U (2010)Google Scholar
  18. 18.
    J. Xu, H. Ishikawa, G. Wollstein, J.S. Schuman, 3D optical coherence tomography super pixel with machine classifier analysis for glaucoma detection. In: Proceedings of IEEE conference on Engineering in Medicine and Biology Society, pp. 3395–3398. IEEE, Piscataway (2011)Google Scholar
  19. 19.
    Z. Hu, M. Niemeijer, K. Lee, M.D. Abramoff, M. Sonka, M. K. Garvin, Automated segmentation of the optic disc margin in 3-D optical coherence tomography images using a graph-theoretic approach. In: Proceedings of SPIE Medical Imaging 72620U (2009)Google Scholar
  20. 20.
    K. Lee, M. Niemeijer, M.K. Garvin, Y.H. Kwon, M. Sonka, M.D. Abràmoff, 3-D segmentation of the rim and cup in spectral-domain optical coherence tomography volumes of the optic nerve head. In: Proceedings of SPIE Medical Imaging 72622D (2009)Google Scholar
  21. 21.
    K. Lee, M. Niemeijer, M.K. Garvin, Y.H. Kwon, M. Sonka, M.D. Abràmoff, Segmentation of the optic disc in 3-D OCT scans of the optic nerve head. IEEE T. Med. Imaging 29(1), 159–168 (2010)CrossRefGoogle Scholar
  22. 22.
    H. Fu, D. Xu, S. Lin, D. Wong, J. Liu, Automatic optic disc detection in OCT slices via low-rank reconstruction. IEEE T. Bio. Eng. 62(4), 1151–1158 (2015)CrossRefGoogle Scholar
  23. 23.
    M.S. Miri, K. Lee, M. Niemeijer, M.D. Abràmoff, Y.H. Kwon, M.K. Garvin, Multimodal segmentation of optic disc and cup from stereo fundus and SD-OCT images. In: Proceedings of SPIE Medical Imaging 86690O (2013)Google Scholar
  24. 24.
    M. Wu, T. Leng, L. de Sisternes, D.L. Rubin, Q. Chen, Automated segmentation of optic disc in SD-OCT images and cup-to-disc ratios quantification by patch searching-based neural canal opening detection. Opt. Expr. 23(24), 31216–31229 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, D.L. Rubin, Automated drusen segmentation and quantification in SD-OCT images. Med. Image Anal. 17(8), 1058–1072 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Gargesha, M.W. Jenkins, A.M. Rollins, D.L. Wilson, Denoising and 4D visualization of OCT images. Opt. Expr. 16(16), 12313–12333 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images. In: Proceedings of IEEE Conference on Computer Vision, pp. 839–846. IEEE, Piscataway (1998)Google Scholar
  28. 28.
    Q. Chen, W. Fan, S. Niu, J. Shi, H. Shen, S. Yuan, Automated choroid segmentation based on gradual intensity distance in HD-OCT images. Opt. Expr. 23(7), 8974–8994 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    K. Li, X. Wu, D.Z. Chen, M. Sonka, Optimal surface segmentation in volumetric images—a graph-theoretic approach. IEEE T. Pattern Anal. 28(1), 119–134 (2006)CrossRefGoogle Scholar
  30. 30.
    M.K. Garvin, M.D. Abràmoff, X. Wu, S.R. Russell, T.L. Burns, M. Sonka, Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE T. Med. Imaging 28(9), 1436–1447 (2009)CrossRefGoogle Scholar
  31. 31.
    X. Chen, J.K. Udupa, U. Bagci, Y. Zhuge, J. Yao, Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE T. Image Process. 21(4), 2035–2046 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  33. 33.
    T. Ojala, M. Pietikäinen, T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE T. Pattern Anal. 24(7), 971–987 (2002)zbMATHCrossRefGoogle Scholar
  34. 34.
    T. Ojala, M. Pietikäinen, T. Mäenpää, A generalized Local Binary Pattern operator for multiresolution gray scale and rotation invariant texture classification. In: Proceedings of International Conference on Advances in Pattern Recognition, pp. 397–406. IEEE, Piscataway (2001)Google Scholar
  35. 35.
    N. Dalal, B. Triggs, Histograms of oriented gradients for human detection. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893. IEEE, Piscataway (2005)Google Scholar
  36. 36.
    J. Zhang, K. Huang, Y. Yu, T. Tan, Boosted local structured hog-lbp for object localization. In: proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1393–1400. IEEE, Piscataway (2011)Google Scholar
  37. 37.
    G.J. Jaffe, J. Caprioli, Optical coherence tomography to detect and manage retinal disease and glaucoma. Am. J. Ophthalmol. 137(1), 156–169 (2004)CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Menglin Wu
    • 1
  • Theodore Leng
    • 2
  • Luis de Sisternes
    • 3
  • Daniel L. Rubin
    • 3
  • Qiang Chen
    • 4
    Email author
  1. 1.School of Computer Science and TechnologyNanjing Tech UniversityNanjingChina
  2. 2.Byers Eye Institute at StanfordStanford University School of MedicinePalo AltoUSA
  3. 3.Department of Radiology and Medicine (Biomedical Informatics Research) and OphthalmologyStanford University School of MedicineStanfordUSA
  4. 4.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations