Advertisement

Chronic Neuropathic Pain Protects the Heart from Ischemia-Reperfusion Injury

  • Yi-Fen Cheng
  • Chien-Chang Chen
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)

Abstract

The prevalence of chronic pain increases with age. The pain occurrence in the elderly ranges from 25% to 80% in different countries. Ischemic heart disease is also prevailing in the aged people. Restored blood flow quickly rescues myocardium but also causes ischemia-reperfusion (IR) injury. Brief episodes of ischemia at a distant organ could reduce the myocardial reperfusion injury. This is called remote ischemic preconditioning (RIPC) cardioprotection. Several circulating factors and neurogenic signals contribute to the cardioprotection by RIPC. Preinfarction angina, a form of chest pain, is associated with significant cardioprotection in myocardial infarction patients. Activation of peripheral nociception also induces cardioprotection against IR injury via neurogenic pathway. It is possible that angina also induces nociceptive signal pathway to provide cardioprotection. It is unclear whether pre-existing chronic pain will also have a cardioprotection effect. We recently reported chronic neuropathic pain attenuates cardiac IR injury in mice. ERK activation in anterior nucleus of paraventricular thalamus (PVA) is required for this remote cardioprotection. Direct activation of PVA neurons also provides cardioprotection against cardiac IR injury. Chronic neuropathic pain-induced cardioprotection requires activation of parasympathetic nerves. This review summarizes the potential interaction of chronic pain and cardiac IR injury.

Keywords

Cardiac ischemia-reperfusion injury Chronic neuropathic pain Anterior nucleus of paraventricular thalamus (PVA) ERK 

References

  1. 1.
    (WHO), W.H.O (2010) Global status report on non-communicable diseases 2010Google Scholar
  2. 2.
    [WHO], W.H.O (2016) Cardiovascular diseases (CVDs) Fact sheet (World Health Organization)Google Scholar
  3. 3.
    Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9:463–484CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Arimura T, Saku K, Kakino T, Nishikawa T, Tohyama T, Sakamoto T, Sakamoto K, Kishi T, Ide T, Sunagawa K (2017) Intravenous electrical vagal nerve stimulation prior to coronary reperfusion in a canine ischemia-reperfusion model markedly reduces infarct size and prevents subsequent heart failure. Int J Cardiol 227:704–710CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Basalay M, Barsukevich V, Mastitskaya S, Mrochek A, Pernow J, Sjoquist PO, Ackland GL, Gourine AV, Gourine A (2012) Remote ischaemic pre- and delayed postconditioning – similar degree of cardioprotection but distinct mechanisms. Exp Physiol 97:908–917CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK, Terkelsen CJ, Munk K, Andersen NH, Hansen TM, Trautner S et al (2010) Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375:727–734CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bouhassira D, Lanteri-Minet M, Attal N, Laurent B, Touboul C (2008) Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 136:380–387CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bourquin AF, Suveges M, Pertin M, Gilliard N, Sardy S, Davison AC, Spahn DR, Decosterd I (2006) Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain 122(14):e11–e14Google Scholar
  9. 9.
    Brandenburger T, Grievink H, Heinen N, Barthel F, Huhn R, Stachuletz F, Kohns M, Pannen B, Bauer I (2014) Effects of remote ischemic preconditioning and myocardial ischemia on microRNA-1 expression in the rat heart in vivo. Shock 42:234–238CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bullitt E (1990) Expression of c-fos-like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol 296:517–530CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Burns RJ, Gibbons RJ, Yi Q, Roberts RS, Miller TD, Schaer GL, Anderson JL, Yusuf S, Investigators CS (2002) The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol 39:30–36CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Byku M, Mann DL (2016) Neuromodulation of the failing heart: lost in translation? JACC Basic Trans Sci 1:95–106CrossRefGoogle Scholar
  13. 13.
    Candilio L, Hausenloy DJ, Yellon DM (2011) Remote ischemic conditioning: a clinical trial’s update. J Cardiovasc Pharmacol Ther 16:304–312CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Candilio, L., Malik, A., Ariti, C., Barnard, M., Di Salvo, C., Lawrence, D., Hayward, M., Yap, J., Roberts, N., Sheikh, A., et al. (2015). Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart 101(3):185–92CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Carrasquillo Y, Gereau RWT (2007) Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci 27:1543–1551CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carro A, Kaski JC (2011) Myocardial infarction in the elderly. Aging Dis 2:116–137PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chang YT, Shih HC, Shyu BC, Chen CC (2015) PVA is important in mediating chronic mechanical hyperalgesia. In: The 9th congress of the European pain federationGoogle Scholar
  18. 18.
    Chen WK, Liu IY, Chang YT, Chen YC, Chen CC, Yen CT, Shin HS, Chen CC (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci 30:10360–10368CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Cheng YF, Chang YT, Chen WH, Shih HC, Chen YH, Shyu BC, Chen CC (2017) Cardioprotection induced in a mouse model of neuropathic pain via anterior nucleus of paraventricular thalamus. Nat Commun 8:826CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM (2001) Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res 89:273–278CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Colombo B, Annovazzi PO, Comi G (2006) Medications for neuropathic pain: current trends. Neurol Sci 27(Suppl 2):S183–S189CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Crestani CC, Alves FH, Resstel LB, Correa FM (2008) Bed nucleus of the stria terminalis alpha(1)-adrenoceptor modulates baroreflex cardiac component in unanesthetized rats. Brain Res 1245:108–115CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Crofford LJ (2015) Chronic pain: where the body meets the brain. Trans Am Clin Climatol Assoc 126:167–183PubMedPubMedCentralGoogle Scholar
  24. 24.
    Davis KD (2003) Neurophysiological and anatomical considerations in functional imaging of pain. Pain 105:1–3CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J et al (2011) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J 32:847–855CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Donato M, Buchholz B, Rodriguez M, Perez V, Inserte J, Garcia-Dorado D, Gelpi RJ (2013) Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Exp Physiol 98:425–434CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Eippert F, Bingel U, Schoell ED, Yacubian J, Klinger R, Lorenz J, Buchel C (2009) Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63:533–543CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Evrengul H, Celek T, Tanriverdi H, Kaftan A, Dursunoglu D, Kilic M (2005) The effect of preinfarction angina on clinical reperfusion time in patients with acute myocardial infarction receiving successful thrombolytic therapy. Can J Cardiol 21:915–920PubMedPubMedCentralGoogle Scholar
  29. 29.
    Finegold JA, Asaria P, Francis DP (2013) Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol 168:934–945CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Foreman RD (1999) Mechanisms of cardiac pain. Annu Rev Physiol 61:143–167CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gray TS, Magnuson DJ (1987) Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat. J Comp Neurol 262:365–374CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J et al (2015) Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1417CrossRefGoogle Scholar
  34. 34.
    Hausenloy DJ, Yellon DM (2008) Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res 79:377–386CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123:92–100CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13:193–209CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hsu DT, Price JL (2009) Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys. J Comp Neurol 512:825–848CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ibanez B, Fuster V, Jimenez-Borreguero J, Badimon JJ (2011) Lethal myocardial reperfusion injury: a necessary evil? Int J Cardiol 151:3–11CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jin Y, Sato J, Yamazaki M, Omura S, Funakubo M, Senoo S, Aoyama M, Mizumura K (2008) Changes in cardiovascular parameters and plasma norepinephrine level in rats after chronic constriction injury on the sciatic nerve. Pain 135:221–231CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jones WK, Fan GC, Liao S, Zhang JM, Wang Y, Weintraub NL, Kranias EG, Schultz JE, Lorenz J, Ren X (2009) Peripheral nociception associated with surgical incision elicits remote nonischemic cardioprotection via neurogenic activation of protein kinase C signaling. Circulation 120:S1–S9CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kanoria S, Jalan R, Seifalian AM, Williams R, Davidson BR (2007) Protocols and mechanisms for remote ischemic preconditioning: a novel method for reducing ischemia reperfusion injury. Transplantation 84:445–458CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg 137:223–231CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kloner RA (2013) Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ Res 113:451–463CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kottenberg E, Musiolik J, Thielmann M, Jakob H, Peters J, Heusch G (2014) Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg 147:376–382CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Landoni G, Baiardo Redaelli M, Votta CD (2016) Remote ischemic preconditioning and cardiac surgery. N Engl J Med 374:489CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lee MC, Zambreanu L, Menon DK, Tracey I (2008) Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci 28:11642–11649CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, Trollinger DR, Herman B, Cascio WE (1996) The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS 76:99–114PubMedPubMedCentralGoogle Scholar
  49. 49.
    Li J, Rohailla S, Gelber N, Rutka J, Sabah N, Gladstone RA, Wei C, Hu P, Kharbanda RK, Redington AN (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109:423CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Liem DA, Verdouw PD, Ploeg H, Kazim S, Duncker DJ (2002) Sites of action of adenosine in interorgan preconditioning of the heart. Am J Physiol Heart Circ Physiol 283:H29–H37CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lim SY, Hausenloy DJ (2012) Remote ischemic conditioning: from bench to bedside. Front Physiol 3:27CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lim SY, Yellon DM, Hausenloy DJ (2010) The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol 105:651–655CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lu Y, Dong CS, Yu JM, Li H (2012) Morphine reduces the threshold of remote ischemic preconditioning against myocardial ischemia and reperfusion injury in rats: the role of opioid receptors. J Cardiothorac Vasc Anesth 26:403–406CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Martinez-Martinez LA, Mora T, Vargas A, Fuentes-Iniestra M, Martinez-Lavin M (2014) Sympathetic nervous system dysfunction in fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, and interstitial cystitis: a review of case-control studies. J Clin Rheumatol 20:146–150CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, Kasparov S, Trapp S, Ackland GL, Gourine AV (2012) Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 95:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Mavropoulos SA, Khan NS, Levy ACJ, Faliks BT, Sison CP, Pavlov VA, Zhang Y, Ojamaa K (2017) Nicotinic acetylcholine receptor-mediated protection of the rat heart exposed to ischemia reperfusion. Mol Med 23:120–133CrossRefGoogle Scholar
  58. 58.
    Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Boning A, Niemann B et al (2015) A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med 373:1397–1407CrossRefGoogle Scholar
  59. 59.
    Mladenovic ZT, Angelkov-Ristic A, Tavciovski D, Mijailovic Z, Gligic B, Cosic Z (2008) The cardioprotective role of preinfarction angina as shown in outcomes of patients after first myocardial infarction. Tex Heart Inst J 35:413–418PubMedPubMedCentralGoogle Scholar
  60. 60.
    Moga MM, Weis RP, Moore RY (1995) Efferent projections of the paraventricular thalamic nucleus in the rat. J Comp Neurol 359:221–238CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Murray CJ, Naghavi M (2014) Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation 129:1483–1492CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Nishii H, Nomura M, Fujimoto N, Matsumoto T (2008) Thalamic neural activation in the cyclophosphamide-induced visceral pain model in mice. Neurosci Res 60:219–227CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Olsen RB, Bruehl S, Nielsen CS, Rosseland LA, Eggen AE, Stubhaug A (2013) Hypertension prevalence and diminished blood pressure-related hypoalgesia in individuals reporting chronic pain in a general population: the Tromso study. Pain 154:257–262CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Ossipov MH, Dussor GO, Porreca F (2010) Central modulation of pain. J Clin Invest 120:3779–3787CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Phillips CJ (2009) The cost and burden of chronic pain. Rev Pain 3:2–5CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Pickard JM, Burke N, Davidson SM, Yellon DM (2017) Intrinsic cardiac ganglia and acetylcholine are important in the mechanism of ischaemic preconditioning. Basic Res Cardiol 112:11CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Pickard JM, Davidson SM, Hausenloy DJ, Yellon DM (2016) Co-dependence of the neural and humoral pathways in the mechanism of remote ischemic conditioning. Basic Res Cardiol 111:50CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pierce GN, Meng H (1992) The role of sodium-proton exchange in ischemic/reperfusion injury in the heart. Na(+)-H+ exchange and ischemic heart disease. Am J Cardiovasc Pathol 4:91–102PubMedPubMedCentralGoogle Scholar
  70. 70.
    Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38:291–300CrossRefGoogle Scholar
  71. 71.
    Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87:893–899CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rohailla S, Clarizia N, Sourour M, Sourour W, Gelber N, Wei C, Li J, Redington AN (2014) Acute, delayed and chronic remote ischemic conditioning is associated with downregulation of mTOR and enhanced autophagy signaling. PLoS One 9:e111291CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ryan CG, McDonough S, Kirwan JP, Leveille S, Martin DJ (2014) An investigation of association between chronic musculoskeletal pain and cardiovascular disease in the Health Survey for England (2008). Eur J Pain 18:740–750CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Salomons TV, Iannetti GD, Liang M, Wood JN (2016) The “Pain Matrix” in pain-free individuals. JAMA Neurol 73:755–756CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schoemaker RG, van Heijningen CL (2000) Bradykinin mediates cardiac preconditioning at a distance. Am J Physiol Heart Circ Physiol 278:H1571–H1576CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Shields SD, Eckert WA 3rd, Basbaum AI (2003) Spared nerve injury model of neuropathic pain in the mouse: a behavioral and anatomic analysis. J Pain 4:465–470CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, Inubushi T, Kinoshita M (1999) Renal ischemia/reperfusion remotely improves myocardial energy metabolism during myocardial ischemia via adenosine receptors in rabbits: effects of “remote preconditioning”. J Am Coll Cardiol 33:556–564CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Thielmann M, Kottenberg E, Kleinbongard P, Wendt D, Gedik N, Pasa S, Price V, Tsagakis K, Neuhauser M, Peters J et al (2013) Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382:597–604CrossRefGoogle Scholar
  80. 80.
    Torrance N, Smith BH, Bennett MI, Lee AJ (2006) The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain 7:281–289CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Tracy LM, Ioannou L, Baker KS, Gibson SJ, Georgiou-Karistianis N, Giummarra MJ (2015) Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 157(1):7–29CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Urch C (2007) Normal pain transmission. Rev Pain 1:2–6CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Vasdekis SN, Athanasiadis D, Lazaris A, Martikos G, Katsanos AH, Tsivgoulis G, Machairas A, Liakakos T (2013) The role of remote ischemic preconditioning in the treatment of atherosclerotic diseases. Brain Behav 3:606–616CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Vertes RP, Hoover WB (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212–237CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Von Korff M, Crane P, Lane M, Miglioretti DL, Simon G, Saunders K, Stang P, Brandenburg N, Kessler R (2005) Chronic spinal pain and physical-mental comorbidity in the United States: results from the national comorbidity survey replication. Pain 113:331–339CrossRefGoogle Scholar
  86. 86.
    Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A (2002) Remote preconditioning protects the heart by activating myocardial PKCepsilon-isoform. Cardiovasc Res 55:583–589CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M (1998) A “second window of protection” occurs 24 h after ischemic preconditioning in the rat heart. J Mol Cell Cardiol 30:1181–1189CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Yi C, Zhang C, Hu X, Li Y, Jiang H, Xu W, Lu J, Liao Y, Ma R, Li X et al (2016) Vagus nerve stimulation attenuates myocardial ischemia/reperfusion injury by inhibiting the expression of interleukin-17A. Exp Ther Med 11:171–176CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Zhang R, Wugeti N, Sun J, Yan H, Guo Y, Zhang L, Ma M, Guo X, Jiao C, Xu W et al (2014) Effects of vagus nerve stimulation via cholinergic anti-inflammatory pathway activation on myocardial ischemia/reperfusion injury in canine. Int J Clin Exp Med 7:2615–2623PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Biomedical Sciences, Academia SinicaTaipeiTaiwan

Personalised recommendations