Advertisement

TRP Channels in Nociception and Pathological Pain

  • Chen-Yu Hung
  • Chun-Hsiang Tan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)

Abstract

Thermal and noxious stimuli are detected by specialized nerve endings, which transform the stimuli into electrical signals and transmit the signals into central nervous system to facilitate the perception of temperature and pain. Several members within the transient receptor potential (TRP) channel family serve as the sensors for temperature and noxious stimuli and are involved in the development of pathological pain, especially inflammatory pain. Various inflammatory mediators can sensitize and modulate the activation threshold of TRP channels and result in the development of inflammatory pain behaviors. A brief review of the role of TRP channels in nociception and the modulatory mechanisms of TRP channels by inflammatory mediators, focusing on TRPV1, TRPA1, and TRPM2, will be presented. Recent advances in the development of therapeutic strategies targeting against TRP channels will also be reviewed.

Keywords

Nociception Pain TRP TRPV1 TRPA1 TRPM2 

References

  1. 1.
    Amaya F, Shimosato G, Nagano M, Ueda M, Hashimoto S, Tanaka Y, Suzuki H, Tanaka M (2004) NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia. Eur J Neurosci 20(9):2303–2310.  https://doi.org/10.1111/j.1460-9568.2004.03701.x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci Off J Soc Neurosci 28(10):2485–2494.  https://doi.org/10.1523/JNEUROSCI.5369-07.2008 CrossRefGoogle Scholar
  3. 3.
    Aneiros E, Cao L, Papakosta M, Stevens EB, Phillips S, Grimm C (2011) The biophysical and molecular basis of TRPV1 proton gating. EMBO J 30(6):994–1002.  https://doi.org/10.1038/emboj.2011.19 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Assas BM, Pennock JI, Miyan JA (2014) Calcitonin gene-related peptide is a key neurotransmitter in the neuro-immune axis. Front Neurosci 8:23.  https://doi.org/10.3389/fnins.2014.00023 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124(6):1269–1282.  https://doi.org/10.1016/j.cell.2006.02.023 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE (2008) TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 118(5):1899–1910.  https://doi.org/10.1172/jci34192 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bhave G, Gereau RW (2004) Posttranslational mechanisms of peripheral sensitization. J Neurobiol 61(1):88–106.  https://doi.org/10.1002/neu.20083 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bhave G, Zhu W, Wang H, Brasier DJ, Oxford GS, Gereau RW (2002) cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron 35(4):721–731CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, Maher SA, Freund-Michel V, Morice AH (2009) TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am J Respir Crit Care Med 180(11):1042–1047.  https://doi.org/10.1164/rccm.200905-0665OC CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Btesh J, Fischer MJ, Stott K, McNaughton PA (2013) Mapping the binding site of TRPV1 on AKAP79: implications for inflammatory hyperalgesia. J Neurosci Off J Soc Neurosci 33(21):9184–9193.  https://doi.org/10.1523/jneurosci.4991-12.2013 CrossRefGoogle Scholar
  11. 11.
    Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D (2013a) TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77(4):667–679.  https://doi.org/10.1016/j.neuron.2012.12.016 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cao E, Liao M, Cheng Y, Julius D (2013b) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478):113–118.  https://doi.org/10.1038/nature12823 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science (New York, NY) 288(5464):306–313CrossRefGoogle Scholar
  14. 14.
    Chen J, Joshi SK, DiDomenico S, Perner RJ, Mikusa JP, Gauvin DM, Segreti JA, Han P, Zhang XF, Niforatos W, Bianchi BR, Baker SJ, Zhong C, Simler GH, McDonald HA, Schmidt RG, McGaraughty SP, Chu KL, Faltynek CR, Kort ME, Reilly RM, Kym PR (2011) Selective blockade of TRPA1 channel attenuates pathological pain without altering noxious cold sensation or body temperature regulation. Pain 152(5):1165–1172.  https://doi.org/10.1016/j.pain.2011.01.049 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chizh BA, O’Donnell MB, Napolitano A, Wang J, Brooke AC, Aylott MC, Bullman JN, Gray EJ, Lai RY, Williams PM, Appleby JM (2007) The effects of the TRPV1 antagonist SB-705498 on TRPV1 receptor-mediated activity and inflammatory hyperalgesia in humans. Pain 132(1–2):132–141.  https://doi.org/10.1016/j.pain.2007.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cosens DJ, Manning A (1969) Abnormal electroretinogram from a Drosophila mutant. Nature 224(5216):285–287CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Csanady L, Torocsik B (2009) Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol 133(2):189–203.  https://doi.org/10.1085/jgp.200810109 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405(6783):183–187.  https://doi.org/10.1038/35012076 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Dhaka A, Uzzell V, Dubin A, Mathur J, Petrus M, Bandell M, Patapoutian A (2009) TRPV1 senses both acidic and basic pH. J Neurosci Off J Soc Neurosci 29(1):153–158.  https://doi.org/10.1523/JNEUROSCI.4901-08.2009 CrossRefGoogle Scholar
  20. 20.
    Doerner JF, Gisselmann G, Hatt H, Wetzel CH (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282(18):13180–13189.  https://doi.org/10.1074/jbc.M607849200 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Dubin AE, Patapoutian A (2010) Nociceptors: the sensors of the pain pathway. J Clin Invest 120(11):3760–3772.  https://doi.org/10.1172/JCI42843 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, Henze DA, Kane SA, Urban MO (2008) HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain 4:48.  https://doi.org/10.1186/1744-8069-4-48 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Fernandes ES, Fernandes MA, Keeble JE (2012) The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 166(2):510–521.  https://doi.org/10.1111/j.1476-5381.2012.01851.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fischer MJ, Btesh J, McNaughton PA (2013) Disrupting sensitization of transient receptor potential vanilloid subtype 1 inhibits inflammatory hyperalgesia. J Neurosci Off J Soc Neurosci 33(17):7407–7414.  https://doi.org/10.1523/jneurosci.3721-12.2013 CrossRefGoogle Scholar
  25. 25.
    Gamper N, Shapiro MS (2007) Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci 8(12):921–934.  https://doi.org/10.1038/nrn2257 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gavva NR, Tamir R, Qu Y, Klionsky L, Zhang TJ, Immke D, Wang J, Zhu D, Vanderah TW, Porreca F, Doherty EM, Norman MH, Wild KD, Bannon AW, Louis JC, Treanor JJ (2005) AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties. J Pharmacol Exp Ther 313(1):474–484.  https://doi.org/10.1124/jpet.104.079855 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gentry C, Stoakley N, Andersson DA, Bevan S (2010) The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol Pain 6:4.  https://doi.org/10.1186/1744-8069-6-4 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Geron M, Hazan A, Priel A (2017) Animal toxins providing insights into TRPV1 activation mechanism. Toxins 9(10):326.  https://doi.org/10.3390/toxins9100326 CrossRefGoogle Scholar
  29. 29.
    Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+−permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, Asakura K, Shirakawa H, Mori Y, Nakagawa T, Kaneko S (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci Off J Soc Neurosci 32(11):3931–3941.  https://doi.org/10.1523/jneurosci.4703-11.2012 CrossRefGoogle Scholar
  31. 31.
    Hasan R, Leeson-Payne AT, Jaggar JH, Zhang X (2017) Calmodulin is responsible for Ca(2+)-dependent regulation of TRPA1 channels. Sci Rep 7:45098.  https://doi.org/10.1038/srep45098 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hazan A, Kumar R, Matzner H, Priel A (2015) The pain receptor TRPV1 displays agonist-dependent activation stoichiometry. Sci Rep 5:12278.  https://doi.org/10.1038/srep12278 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hecquet CM, Ahmmed GU, Vogel SM, Malik AB (2008) Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 102(3):347–355.  https://doi.org/10.1161/CIRCRESAHA.107.160176 CrossRefGoogle Scholar
  34. 34.
    Hinman A, Chuang HH, Bautista DM, Julius D (2006) TRP channel activation by reversible covalent modification. Proc Natl Acad Sci U S A 103(51):19564–19568.  https://doi.org/10.1073/pnas.0609598103 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huang KP (1989) The mechanism of protein kinase C activation. Trends Neurosci 12(11):425–432CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ishii M, Shimizu S, Hagiwara T, Wajima T, Miyazaki A, Mori Y, Kiuchi Y (2006a) Extracellular-added ADP-ribose increases intracellular free Ca2+ concentration through Ca2+ release from stores, but not through TRPM2-mediated Ca2+ entry, in rat beta-cell line RIN-5F. J Pharmacol Sci 101(2):174–178CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ishii M, Shimizu S, Hara Y, Hagiwara T, Miyazaki A, Mori Y, Kiuchi Y (2006b) Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat beta-cell line RIN-5F. Cell Calcium 39(6):487–494.  https://doi.org/10.1016/j.ceca.2006.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Itoh M, Ishihara K, Tomizawa H, Tanaka H, Kobune Y, Ishikawa J, Kaisho T, Hirano T (1994) Molecular cloning of murine BST-1 having homology with CD38 and Aplysia ADP-ribosyl cyclase. Biochem Biophys Res Commun 203(2):1309–1317.  https://doi.org/10.1006/bbrc.1994.2325 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jardin I, Lopez JJ, Diez R, Sanchez-Collado J, Cantonero C, Albarran L, Woodard GE, Redondo PC, Salido GM, Smani T, Rosado JA (2017) TRPs in pain sensation. Front Physiol 8:392.  https://doi.org/10.3389/fphys.2017.00392 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, Meng ID, Julius D (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427(6971):260–265.  https://doi.org/10.1038/nature02282 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384.  https://doi.org/10.1146/annurev-cellbio-101011-155833 CrossRefGoogle Scholar
  42. 42.
    Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, Takada Y, Kume T, Katsuki H, Mori Y, Akaike A (2006) A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 101(1):66–76CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 109(17):6745–6750.  https://doi.org/10.1073/pnas.1114193109 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kim AY, Tang Z, Liu Q, Patel KN, Maag D, Geng Y, Dong X (2008) Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133(3):475–485.  https://doi.org/10.1016/j.cell.2008.02.053 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kirschstein T, Busselberg D, Treede RD (1997) Coexpression of heat-evoked and capsaicin-evoked inward currents in acutely dissociated rat dorsal root ganglion neurons. Neurosci Lett 231(1):33–36CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493(4):596–606.  https://doi.org/10.1002/cne.20794 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286(1):C129–C137.  https://doi.org/10.1152/ajpcell.00331.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kuhn FJ, Luckhoff A (2004) Sites of the NUDT9-H domain critical for ADP-ribose activation of the cation channel TRPM2. J Biol Chem 279(45):46431–46437.  https://doi.org/10.1074/jbc.M407263200 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lange I, Penner R, Fleig A, Beck A (2008) Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium 44(6):604–615.  https://doi.org/10.1016/j.ceca.2008.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, Penner R (2009) TRPM2 functions as a lysosomal Ca2+−release channel in beta cells. Sci Signal 2(71):ra23.  https://doi.org/10.1126/scisignal.2000278 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lewin GR, Rueff A, Mendell LM (1994) Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur J Neurosci 6(12):1903–1912CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li L, Hasan R, Zhang X (2014) The basal thermal sensitivity of the TRPV1 Ion channel is determined by PKCbetaII. J Neurosci 34(24):8246–8258.  https://doi.org/10.1523/jneurosci.0278-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lima WG, Marques-Oliveira GH, da Silva TM, Chaves VE (2017) Role of calcitonin gene-related peptide in energy metabolism. Endocrine 58(1):3–13.  https://doi.org/10.1007/s12020-017-1404-4 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Linley JE, Rose K, Ooi L, Gamper N (2010) Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflugers Arch 459(5):657–669.  https://doi.org/10.1007/s00424-010-0784-6 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lund FE, Cockayne DA, Randall TD, Solvason N, Schuber F, Howard MC (1998) CD38: a new paradigm in lymphocyte activation and signal transduction. Immunol Rev 161:79–93CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ma W, Quirion R (2007) Inflammatory mediators modulating the transient receptor potential vanilloid 1 receptor: therapeutic targets to treat inflammatory and neuropathic pain. Expert Opin Ther Targets 11(3):307–320.  https://doi.org/10.1517/14728222.11.3.307 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, Patapoutian A (2007) Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature 445(7127):541–545.  https://doi.org/10.1038/nature05544 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mandadi S, Sokabe T, Shibasaki K, Katanosaka K, Mizuno A, Moqrich A, Patapoutian A, Fukumi-Tominaga T, Mizumura K, Tominaga M (2009) TRPV3 in keratinocytes transmits temperature information to sensory neurons via ATP. Pflugers Arch 458(6):1093–1102.  https://doi.org/10.1007/s00424-009-0703-x CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Manitpisitkul P, Mayorga A, Shalayda K, De Meulder M, Romano G, Jun C, Moyer JA (2015) Safety, tolerability and pharmacokinetic and pharmacodynamic learnings from a double-blind, randomized, placebo-controlled, sequential group first-in-human study of the TRPV1 antagonist, JNJ-38893777, in healthy men. Clin Drug Investig 35(6):353–363.  https://doi.org/10.1007/s40261-015-0285-7 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    McNamara CR, Mandel-Brehm J, Bautista DM, Siemens J, Deranian KL, Zhao M, Hayward NJ, Chong JA, Julius D, Moran MM, Fanger CM (2007) TRPA1 mediates formalin-induced pain. Proc Natl Acad Sci U S A 104(33):13525–13530.  https://doi.org/10.1073/pnas.0705924104 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Meotti FC, Forner S, Lima-Garcia JF, Viana AF, Calixto JB (2013) Antagonism of the transient receptor potential ankyrin 1 (TRPA1) attenuates hyperalgesia and urinary bladder overactivity in cyclophosphamide-induced haemorrhagic cystitis. Chem Biol Interact 203(2):440–447.  https://doi.org/10.1016/j.cbi.2013.03.008 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Moran MM, Szallasi A (2017) Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol.  https://doi.org/10.1111/bph.14044 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci Off J Soc Neurosci 25(16):4052–4061.  https://doi.org/10.1523/jneurosci.0013-05.2005 CrossRefGoogle Scholar
  64. 64.
    Nishina H, Inageda K, Takahashi K, Hoshino S, Ikeda K, Katada T (1994) Cell surface antigen CD38 identified as ecto-enzyme of NAD glycohydrolase has hyaluronate-binding activity. Biochem Biophys Res Commun 203(2):1318–1323.  https://doi.org/10.1006/bbrc.1994.2326 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Olah ME, Jackson MF, Li H, Perez Y, Sun HS, Kiyonaka S, Mori Y, Tymianski M, MacDonald JF (2009) Ca2+−dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 587(Pt 5):965–979.  https://doi.org/10.1113/jphysiol.2008.162289 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Patapoutian A, Tate S, Woolf CJ (2009) Transient receptor potential channels: targeting pain at the source. Nat Rev Drug Discov 8(1):55–68.  https://doi.org/10.1038/nrd2757 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Paulsen CE, Armache J-P, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Biophys J 110:26aCrossRefGoogle Scholar
  68. 68.
    Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet JP, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411(6837):595–599.  https://doi.org/10.1038/35079100 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Prescott ED, Julius D (2003) A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science (New York, NY) 300(5623):1284–1288.  https://doi.org/10.1126/science.1083646 CrossRefGoogle Scholar
  70. 70.
    Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647.  https://doi.org/10.1146/annurev.physiol.68.040204.100431 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rohacs T (2015) Phosphoinositide regulation of TRPV1 revisited. Pflugers Arch 467(9):1851–1869.  https://doi.org/10.1007/s00424-015-1695-3 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ross RA (2003) Anandamide and vanilloid TRPV1 receptors. Br J Pharmacol 140(5):790–801.  https://doi.org/10.1038/sj.bjp.0705467 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Siemens J, Zhou S, Piskorowski R, Nikai T, Lumpkin EA, Basbaum AI, King D, Julius D (2006) Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 444(7116):208–212.  https://doi.org/10.1038/nature05285 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Silos-Santiago I, Molliver DC, Ozaki S, Smeyne RJ, Fagan AM, Barbacid M, Snider WD (1995) Non-TrkA-expressing small DRG neurons are lost in TrkA deficient mice. J Neurosci Off J Soc Neurosci 15(9):5929–5942CrossRefGoogle Scholar
  75. 75.
    So K, Haraguchi K, Asakura K, Isami K, Sakimoto S, Shirakawa H, Mori Y, Nakagawa T, Kaneko S (2015) Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models. J Pharmacol Sci 127(3):237–243.  https://doi.org/10.1016/j.jphs.2014.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Starkus J, Beck A, Fleig A, Penner R (2007) Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol 130(4):427–440.  https://doi.org/10.1085/jgp.200709836 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Sumoza-Toledo A, Penner R (2011) TRPM2: a multifunctional ion channel for calcium signalling. J Physiol 589(Pt 7):1515–1525.  https://doi.org/10.1113/jphysiol.2010.201855 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sun L, Ye RD (2012) Role of G protein-coupled receptors in inflammation. Acta Pharmacol Sin 33(3):342–350.  https://doi.org/10.1038/aps.2011.200 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Tan CH, McNaughton PA (2016) The TRPM2 ion channel is required for sensitivity to warmth. Nature 536(7617):460–463.  https://doi.org/10.1038/nature19074 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279(34):35133–35138.  https://doi.org/10.1074/jbc.M406260200 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M (2006) TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J 25(9):1804–1815.  https://doi.org/10.1038/sj.emboj.7601083 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Tominaga M, Caterina MJ (2004) Thermosensation and pain. J Neurobiol 61(1):3–12.  https://doi.org/10.1002/neu.20079 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104(33):13519–13524.  https://doi.org/10.1073/pnas.0705923104 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Vandewauw I, De Clercq K, Mulier M, Held K, Pinto S, Van Ranst N, Segal A, Voet T, Vennekens R, Zimmermann K, Vriens J, Voets T (2018) A TRP channel trio mediates acute noxious heat sensing. Nature.  https://doi.org/10.1038/nature26137 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Vriens J, Nilius B, Vennekens R (2008) Herbal compounds and toxins modulating TRP channels. Curr Neuropharmacol 6(1):79–96.  https://doi.org/10.2174/157015908783769644 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang S, Dai Y, Fukuoka T, Yamanaka H, Kobayashi K, Obata K, Cui X, Tominaga M, Noguchi K (2008a) Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain J Neurol 131(Pt 5):1241–1251.  https://doi.org/10.1093/brain/awn060 CrossRefGoogle Scholar
  87. 87.
    Wang YY, Chang RB, Waters HN, McKemy DD, Liman ER (2008b) The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J Biol Chem 283(47):32691–32703.  https://doi.org/10.1074/jbc.M803568200 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem 277(26):23150–23156.  https://doi.org/10.1074/jbc.M112096200 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 92(21):9652–9656CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Wesseldijk F (2008) Inflammatory soup mediators of inflammation in CRPSGoogle Scholar
  91. 91.
    Wick EC, Hoge SG, Grahn SW, Kim E, Divino LA, Grady EF, Bunnett NW, Kirkwood KS (2006) Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 290(5):G959–G969.  https://doi.org/10.1152/ajpgi.00154.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Woo DH, Jung SJ, Zhu MH, Park CK, Kim YH, Oh SB, Lee CJ (2008) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 4:42.  https://doi.org/10.1186/1744-8069-4-42 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Woodbury CJ, Zwick M, Wang S, Lawson JJ, Caterina MJ, Koltzenburg M, Albers KM, Koerber HR, Davis BM (2004) Nociceptors lacking TRPV1 and TRPV2 have normal heat responses. J Neurosci Off J Soc Neurosci 24(28):6410–6415.  https://doi.org/10.1523/jneurosci.1421-04.2004 CrossRefGoogle Scholar
  94. 94.
    Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2+influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14(7):738–747.  https://doi.org/10.1038/nm1758 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhang X (2015) Molecular sensors and modulators of thermoreception. Channels (Austin) 9(2):73–81.  https://doi.org/10.1080/19336950.2015.1025186 CrossRefGoogle Scholar
  96. 96.
    Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10(3):277–279.  https://doi.org/10.1038/nn1843 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of General MedicineKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
  2. 2.Department of NeurologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Graduate Institute of Clinical Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan

Personalised recommendations