Advertisement

Pain-Associated Neural Plasticity in the Parabrachial to Central Amygdala Circuit

Pain Changes the Brain, and the Brain Changes the Pain
  • Fusao Kato
  • Yae K. Sugimura
  • Yukari Takahashi
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)

Abstract

In addition to the canonical spino-thalamo-cortical pathway, lines of recently accumulated anatomical and physiological evidence suggest that projections originating in nociception-specific neurons in lamina I of the dorsal horn or the spinal nucleus of the trigeminal nerve to the lateral parabrachial nucleus (LPB) and then to the central amygdala (CeA) play essential roles in the nociception-emotion link and its tightening in chronic pain. With recent advances in the artificial manipulation of central neuronal activity, such as those with optogenetics, it is now possible to address many unanswered questions regarding the molecular and cellular mechanisms underlying the plastic changes in this pathway and their role in the pain chronification process.

Keywords

Central sensitization Nociception-emotion association Optogenetics 

Notes

Acknowledgments

The authors acknowledge invaluable scientific contributions by Ayako M Watabe, Yuta Miyazawa, Kei Shinohara, Yuya Okutsu, Ryo Ikeda, Mariko Ito, Mariko Sugimoto, and Tsuyoshi Tokita. Supported by Grant-in-Aid for Exploratory Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) to F.K. (No. 23650208), the MEXT-Supported Program for the Strategic Research Foundation at Private Universities (No. S1311009) to F.K., Grants-in-Aid for Scientific Research (B) to F.K. (Nos. 25293136 and 18H02722) and a Grant-in-Aid for Young Scientists (B) and Grant-in-Aid for Scientific Research (C) to Y.T. (Nos. 15K19194 and 17K09042).

References

  1. 1.
    Bliss TV, Collingridge GL, Kaang BK, Zhuo M (2016) Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain. Nat Rev Neurosci 17:485–496CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kim SK, Nabekura J (2011) Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci 31:5477–5482CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Takeuchi Y, Yamasaki M, Nagumo Y, Imoto K, Watanabe M, Miyata M (2012) Rewiring of afferent fibers in the somatosensory thalamus of mice caused by peripheral sensory nerve transection. J Neurosci 32:6917–6930CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ren W, Centeno MV, Berger S, Wu Y, Na X, Liu X et al (2015) The indirect pathway of the nucleus accumbens shell amplifies neuropathic pain. Nat Neurosci 19:1–5Google Scholar
  5. 5.
    Qiu S, Chen T, Koga K, Guo Y, Xu H, Song Q et al (2013) An increase in synaptic NMDA receptors in the insular cortex contributes to neuropathic pain. Sci Signal 6:ra34CrossRefGoogle Scholar
  6. 6.
    Metz AE, Yau H-J, Centeno MV, Apkarian AV, Martina M (2009) Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci U S A 106:2423–2428CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ji G, Neugebauer V (2011) Pain-related deactivation of medial prefrontal cortical neurons involves mGluR1 and GABA(A) receptors. J Neurophysiol 106:2642–2652CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Neugebauer V (2015) Amygdala pain mechanisms. Handb Exp Pharmacol 227:261–284CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Veinante P, Yalcin I, Barrot M (2013) The amygdala between sensation and affect: a role in pain. J Mol Psychiatry 1:9CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Al-Khater KM, Todd AJ (2009) Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 515:629–646CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Aicher SA, Hermes SM, Hegarty DM (2013) Corneal afferents differentially target thalamic- and parabrachial-projecting neurons in spinal trigeminal nucleus caudalis. Neuroscience 232:182–193CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Watabe AM, Ochiai T, Nagase M, Takahashi Y, Sato M, Kato F (2013) Synaptic potentiation in the nociceptive amygdala following fear learning in mice. Mol Brain 6:11CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Han S, Soleiman MT, Soden ME, Zweifel LS, Palmiter RD (2015) Elucidating an affective pain circuit that creates a threat memory. Cell 162:363–374CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Palmiter RD (2018) The parabrachial nucleus: CGRP neurons function as a general alarm. Trends Neurosci 41:280–293CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Blomqvist A, Zhang ET, Craig AD (2000) Cytoarchitectonic and immunohistochemical characterization of a specific pain and temperature relay, the posterior portion of the ventral medial nucleus, in the human thalamus. Brain 123(Pt 3):601–619CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vachon-Presseau E, Centeno MV, Ren W, Berger SE, Tétreault P, Ghantous M et al (2016) The emotional brain as a predictor and amplifier of chronic pain. J Dent Res 95:605–612CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sato M, Ito M, Nagase M, Sugimura YK, Takahashi Y, Watabe AM et al (2015) The lateral parabrachial nucleus is actively involved in the acquisition of fear memory in mice. Mol Brain 8:22CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Keller AF, Beggs S, Salter MW, De Koninck Y (2007) Transformation of the output of spinal lamina I neurons after nerve injury and microglia stimulation underlying neuropathic pain. Mol Pain 3:27CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hermanson O, Blomqvist A (1996) Subnuclear localization of FOS-like immunoreactivity in the rat parabrachial nucleus after nociceptive stimulation. J Comp Neurol 368:45–56CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Miyazawa Y, Sugimoto M, Takahashi Y, Watabe AM, Kato F (2015) Right side specific potentiation of parabrachial-central amygdala transmission by trigeminal nerve-mediated inflammatory pain. Program No. 604.19. 2015 Neuroscience Meeting Planner. Washington, DC, Society for Neuroscience, 2015. OnlineGoogle Scholar
  21. 21.
    Sarhan M, Freund-Mercier M-J, Veinante P (2005) Branching patterns of parabrachial neurons projecting to the central extended amgydala: single axonal reconstructions. J Comp Neurol 491:418–442CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Sugimura YK, Takahashi Y, Watabe AM, Kato F (2016) Synaptic and network consequences of monosynaptic nociceptive inputs of parabrachial nucleus origin in the central amygdala. J Neurophysiol 81:2721–2739CrossRefGoogle Scholar
  23. 23.
    Neugebauer V, Li W (2002) Processing of nociceptive mechanical and thermal information in central amygdala neurons with knee-joint input. J Neurophysiol 87:103–112CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bernard JF, Huang GF, Besson JM (1992) Nucleus centralis of the amygdala and the globus pallidus ventralis: electrophysiological evidence for an involvement in pain processes. J Neurophysiol 68:551–569CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Carrasquillo Y, Gereau RW 4th (2007) Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci 27:1543–1551CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Goncalves L, Silva R, Pinto-Ribeiro F, Pego JM, Bessa JM, Pertovaara A et al (2008) Neuropathic pain is associated with depressive behaviour and induces neuroplasticity in the amygdala of the rat. Exp Neurol 213:48–56CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Neugebauer V, Li W, Bird GC, Bhave G, Gereau RW 4th (2003) Synaptic plasticity in the amygdala in a model of arthritic pain: differential roles of metabotropic glutamate receptors 1 and 5. J Neurosci 23:52–63CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Han JS, Neugebauer V (2004) Synaptic plasticity in the amygdala in a visceral pain model in rats. Neurosci Lett 361:254–257CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ikeda R, Takahashi Y, Inoue K, Kato F (2007) NMDA receptor-independent synaptic plasticity in the central amygdala in the rat model of neuropathic pain. Pain 127:161–172CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nakao A, Takahashi Y, Nagase M, Ikeda R, Kato F (2012) Role of capsaicin-sensitive C-fiber afferents in neuropathic pain-induced synaptic potentiation in the nociceptive amygdala. Mol Pain 8(1): 51CrossRefGoogle Scholar
  31. 31.
    Shinohara K, Watabe AM, Nagase M, Okutsu Y, Takahashi Y, Kurihara H et al (2017) Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur J Neurosci 46:2149–2160CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sadler KE, McQuaid NA, Cox AC, Behun MN, Trouten AM, Kolber BJ (2017) Divergent functions of the left and right central amygdala in visceral nociception. Pain 158:747–759CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ansah OB, Gonçalves L, Almeida A, Pertovaara A (2009) Enhanced pronociception by amygdaloid group I metabotropic glutamate receptors in nerve-injured animals. Exp Neurol 216:66–74CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ortiz JP, Heinricher MM, Selden NR (2007) Noradrenergic agonist administration into the central nucleus of the amygdala increases the tail-flick latency in lightly anesthetized rats. Neuroscience 148:737–743CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ren W, Kiritoshi T, Grégoire S, Neuropeptide S et al (2013) A novel regulator of pain-related amygdala plasticity and behaviors. J Neurophysiol 110:1765–1781Google Scholar
  36. 36.
    Han JS, Bird GC, Neugebauer V (2004) Enhanced group III mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Neuropharmacology 46:918–926CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Neugebauer V, Galhardo V, Maione S, Mackey SC (2009) Forebrain pain mechanisms. Brain Res Rev 60:226–242CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Abbott FV, Franklin KBJ, Westbrook RF (1995) The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 60:91–102CrossRefGoogle Scholar
  39. 39.
    Takahashi Y, Ikeda R, Kato F (2009) Synaptic potentiation in the central amygdala involves different mechanisms depending on pain model. Pain Res 24:137–146CrossRefGoogle Scholar
  40. 40.
    Ochiai T, Takahashi Y, Asato M, Watabe AM, Ohsawa M, Kamei J, et al (2011) Bilateral potentiation of parabrachial, but not basolateral amygdala inputs, to central capsular amygdala neurons in neuropathic diabetic mice. Program No. 412. 06. 2011 Neuroscience Meeting Planner. Washington, DC, Society for Neuroscience, OnlineGoogle Scholar
  41. 41.
    Cheng SJ, Chen CC, Yang HW, Chang YT, Bai SW, Yen CT et al (2011) Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci 31:2258–2270CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Adedoyin MO, Vicini S, Neale JH (2010) Endogenous N-acetylaspartylglutamate (NAAG) inhibits synaptic plasticity/transmission in the amygdala in a mouse inflammatory pain model. Mol Pain 6:60CrossRefGoogle Scholar
  43. 43.
    Huber D, Veinante P, Stoop R (2005) Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science 308(5719):245–248CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fusao Kato
    • 1
  • Yae K. Sugimura
    • 1
  • Yukari Takahashi
    • 1
  1. 1.Department of NeuroscienceJikei University School of MedicineTokyoJapan

Personalised recommendations