Advertisement

Knowing the Neuronal Mechanism of Spontaneous Pain to Treat Chronic Pain in the Future

  • Xiang-Yao Li
  • Jing-Hua Wang
  • Cheng Wu
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1099)

Abstract

Spontaneous pain is the major complain for the patients to see a doctor. Human imaging studies presented that spontaneous pain is mainly associated with activity changes in medial pain pathway, while broader brain regions were activated by allodynia pain. On behavioral level, temporally disassociation between the evoked pain and spontaneous pain was observed; these data gave a hint that the spontaneous pain and evoked pain may be mediated by different neuronal mechanisms. And more attentions should be paid to the spontaneous pain to treat the chronic pain in the future.

Keywords

Neuropathic pain Spontaneous pain Evoked pain Central sensitization 

Notes

Acknowledgments

This study was supported by the National Program on Key Basic Research Project (973 Program) (2014CB548200) and Chinese National Natural Science Foundation (81571068).

References

  1. 1.
    Bennett GJ (2012) What is spontaneous pain and who has it? J Pain 13:921–929CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mogil JS (2012) The etiology and symptomatology of spontaneous pain. J Pain 13:932–933; discussion 934–5CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Tappe-Theodor A, Kuner R (2014) Studying ongoing and spontaneous pain in rodents – challenges and opportunities. Eur J Neurosci 39:1881–1890CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ängeby Möller K, Svärd H, Suominen A, Immonen J, Holappa J, Stenfors C (2018) Gait analysis and weight bearing in pre-clinical joint pain research. J Neurosci Methods 300:92–102CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Urban R, Scherrer G, Goulding EH, Tecott LH, Basbaum AI (2011) Behavioral indices of ongoing pain are largely unchanged in male mice with tissue or nerve injury-induced mechanical hypersensitivity. Pain 152:990–1000CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Whitehead RA, Lam NL, Sun MS, Sanchez J, Noor S, Vanderwall AG, Petersen TR, Martin HB, Milligan ED (2017) Chronic sciatic neuropathy in rat reduces voluntary wheel-running activity with concurrent chronic mechanical allodynia. Anesth Analg 124:346–355CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mogil JS, Graham AC, Ritchie J, Hughes SF, Austin JS, Schorscher-Petcu A, Langford DJ, Bennett GJ (2010) Hypolocomotion, asymmetrically directed behaviors (licking, lifting, flinching, and shaking) and dynamic weight bearing (gait) changes are not measures of neuropathic pain in mice. Mol Pain 6:34CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, LaCroix-Fralish ML, Matsumiya L, Sorge RE, Sotocinal SG, Tabaka JM, Wong D, van den Maagdenberg AMJM, Ferrari MD, Craig KD, Mogil JS (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7:447CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Tuttle AH, Molinaro MJ, Jethwa JF, Sotocinal SG, Prieto JC, Styner MA, Mogil JS, Zylka MJ (2018) A deep neural network to assess spontaneous pain from mouse facial expressions. Mol Pain 14:1–9. 1744806918763658CrossRefGoogle Scholar
  10. 10.
    Ko MY, Jang EY, Lee JY, Kim SP, Whang SH, Lee BH, Kim HY, Yang CH, Cho HJ, Gwak YS (2018) The role of ventral tegmental area GABA on the chronic neuropathic pain following spinal cord injury in rat. J Neurotrauma 35:1755–1764CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Kurejova M, Nattenmüller U, Hildebrandt U, Selvaraj D, Stösser S, Kuner R (2010) An improved behavioural assay demonstrates that ultrasound vocalizations constitute a reliable indicator of chronic cancer pain and neuropathic pain. Mol Pain 6:18CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sufka KJ (1994) Conditioned place preference paradigm: a novel approach for analgesic drug assessment against chronic pain. Pain 58:355–366CrossRefPubMedCentralGoogle Scholar
  13. 13.
    King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F (2009) Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci 12(11):1364–1366. https://doi.org/10.1038/nn.2407. Epub 2009 Sep 27CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wang Y-J, Zuo Z-X, Zhang M, Feng Z-H, Yan M, Li X-Y (2017) The analgesic effects of (5R,6R)6-(3-propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1] octane on a mouse model of neuropathic pain. Anesth Analg 124:1330–1338CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Nones CFM, Claudino RF, Ferreira LEN, Dos Reis RC, King T, Chichorro JG (2017) Descending facilitatory pain pathways mediate ongoing pain and tactile hypersensitivity in a rat model of trigeminal neuropathic pain. Neurosci Lett 644:18–23CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Borsook D, Moulton EA, Schmidt KF, Becerra LR (2007) Neuroimaging revolutionizes therapeutic approaches to chronic pain. Mol Pain 3:25PubMedPubMedCentralGoogle Scholar
  17. 17.
    Alomar S, Bakhaidar M (2018) Neuroimaging of neuropathic pain: review of current status and future directions. Neurosurg Rev 41:771–777CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Maihofner C, Schmelz M, Forster C, Neundorfer B, Handwerker HO (2004) Neural activation during experimental allodynia: a functional magnetic resonance imaging study. Eur J Neurosci 19:3211–3218CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Maihofner C, Handwerker HO (2005) Differential coding of hyperalgesia in the human brain: a functional MRI study. Neuroimage 28:996–1006CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Seifert F, Maihofner C (2007) Representation of cold allodynia in the human brain – a functional MRI study. Neuroimage 35:1168–1180CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Maihofner C, Handwerker HO, Birklein F (2006) Functional imaging of allodynia in complex regional pain syndrome. Neurology 66:711–717CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Schweinhardt P, Glynn C, Brooks J, McQuay H, Jack T, Chessell I, Bountra C, Tracey I (2006) An fMRI study of cerebral processing of brush-evoked allodynia in neuropathic pain patients. Neuroimage 32:256–265CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hubbard CS, Khan SA, Xu S, Cha M, Masri R, Seminowicz DA (2015) Behavioral, metabolic and functional brain changes in a rat model of chronic neuropathic pain: a longitudinal MRI study. Neuroimage 107:333–344CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Komaki Y, Hikishima K, Shibata S, Konomi T, Seki F, Yamada M, Miyasaka N, Fujiyoshi K, Okano HJ, Nakamura M, Okano H (2016) Functional brain mapping using specific sensory-circuit stimulation and a theoretical graph network analysis in mice with neuropathic allodynia. Sci Rep 6:37802CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Moisset X, Bouhassira D (2007) Brain imaging of neuropathic pain. Neuroimage 37(Suppl 1):S80–S88CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chen FY, Tao W, Li YJ (2008) Advances in brain imaging of neuropathic pain. Chin Med J 121:653–657PubMedPubMedCentralGoogle Scholar
  27. 27.
    Baliki MN, Geha PY, Jabakhanji R, Harden N, Schnitzer TJ, Apkarian AV (2008) A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis. Mol Pain 4:47CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Baliki MN, Baria AT, Apkarian AV (2011) The cortical rhythms of chronic back pain. J Neurosci 31:13981–13990CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Parks EL, Geha PY, Baliki MN, Katz J, Schnitzer TJ, Apkarian AV (2011) Brain activity for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain. Eur J Pain 15(8):843.e1-843.e14Google Scholar
  30. 30.
    Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128:88–100CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cauda F, Sacco K, D’Agata F, Duca S, Cocito D, Geminiani G, Migliorati F, Isoardo G (2009) Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci 10:138CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kupers RC, Nuytten D, De Castro-Costa M, Gybels JM (1992) A time course analysis of the changes in spontaneous and evoked behaviour in a rat model of neuropathic pain. Pain 50:101–111CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Paulson PE, Casey KL, Morrow TJ (2002) Long-term changes in behavior and regional cerebral blood flow associated with painful peripheral mononeuropathy in the rat. Pain 95:31–40CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nakazato-Imasato E, Kurebayashi Y (2009) Pharmacological characteristics of the hind paw weight bearing difference induced by chronic constriction injury of the sciatic nerve in rats. Life Sci 84:622–626CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Vadakkan KI, Jia YH, Zhuo M (2005) A behavioral model of neuropathic pain induced by ligation of the common peroneal nerve in mice. J Pain 6:747–756CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Wang YJ, Zuo ZX, Wu C, Liu L, Feng ZH, Li XY (2017) Cingulate alpha-2A adrenoceptors mediate the effects of clonidine on spontaneous pain induced by peripheral nerve injury. Front Mol Neurosci 10:289CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mao J, Mayer DJ, Hayes RL, Price DD (1993) Spatial patterns of increased spinal cord membrane-bound protein kinase C and their relation to increases in 14C-2-deoxyglucose metabolic activity in rats with painful peripheral mononeuropathy. J Neurophysiol 70:470–481CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhang JM, Song XJ, LaMotte RH (1997) An in vitro study of ectopic discharge generation and adrenergic sensitivity in the intact, nerve-injured rat dorsal root ganglion. Pain 72:51–57CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH (1999) Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol 82:3347–3358CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kasai M, Mizumura K (2001) Increase in spontaneous action potentials and sensitivity in response to norepinephrine in dorsal root ganglion neurons of adjuvant inflamed rats. Neurosci Res 39:109–113CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Gould HJ 3rd, England JD, Liu ZP, Levinson SR (1998) Rapid sodium channel augmentation in response to inflammation induced by complete Freund’s adjuvant. Brain Res 802:69–74CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Okun A, Liu P, Davis P, Ren J, Remeniuk B, Brion T, Ossipov MH, Xie J, Dussor GO, King T, Porreca F (2012) Afferent drive elicits ongoing pain in a model of advanced osteoarthritis. Pain 153:924–933CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mao J, Mayer DJ, Price DD (1993) Patterns of increased brain activity indicative of pain in a rat model of peripheral mononeuropathy. J Neurosci 13:2689–2702CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Paulson PE, Morrow TJ, Casey KL (2000) Bilateral behavioral and regional cerebral blood flow changes during painful peripheral mononeuropathy in the rat. Pain 84:233–245CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Russo JF, Sheth SA (2015) Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg Focus 38:E11CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Qu C, King T, Okun A, Lai J, Fields HL, Porreca F (2011) Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain 152:1641–1648CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Xu H, Wu LJ, Wang H, Zhang X, Vadakkan KI, Kim SS, Steenland HW, Zhuo M (2008) Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 28:7445–7453CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Li XY, Ko HG, Chen T, Descalzi G, Koga K, Wang H, Kim SS, Shang Y, Kwak C, Park SW, Shim J, Lee K, Collingridge GL, Kaang BK, Zhuo M (2010) Alleviating neuropathic pain hypersensitivity by inhibiting PKMzeta in the anterior cingulate cortex. Science 330:1400–1404CrossRefGoogle Scholar
  49. 49.
    Zhao Q, Zhang L, Shu R, Wang C, Yu Y, Wang H, Wang G (2017) Involvement of spinal PKMzeta expression and phosphorylation in remifentanil-induced long-term hyperalgesia in rats. Cell Mol Neurobiol 37:643–653CrossRefPubMedCentralGoogle Scholar
  50. 50.
    King T, Qu C, Okun A, Melemedjian OK, Mandell EK, Maskaykina IY, Navratilova E, Dussor GO, Ghosh S, Price TJ, Porreca F (2012) Contribution of PKMzeta-dependent and independent amplification to components of experimental neuropathic pain. Pain 153:1263–1273CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Zhang L, Wang G, Ma J, Liu C, Liu X, Zhan Y, Zhang M (2016) Brain-derived neurotrophic factor (BDNF) in the rostral anterior cingulate cortex (rACC) contributes to neuropathic spontaneous pain-related aversion via NR2B receptors. Brain Res Bull 127:56–65CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations