A Novel Video Genre Classification Algorithm by Keyframe Relevance

  • Jina VargheseEmail author
  • K. N. Ramachandran Nair
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 106)


Video classification is one of the challenging areas in the current world. It is a necessary tool for systematic organization and efficient retrieval of videos from repositories. Generally, video classification is a complex operation since video is a composite media with different components. Here, we propose a novel and simple probabilistic approach to classify the videos, broadly into three major domains news, sports, and entertainment. The existence measures of respective scene types in video genres are the prominent factor used in the proposed approach for video classification. We have tested our work on some test videos like football, wedding, and news discussion videos and results sound well ....


SBD (shot boundary detection) Key frame extraction Scene classification Video classification 



This work has been done as a part of Ph.D. programme of Author, funded by UGC MANF fellowship, Government of India.


  1. 1.
    Brezeale, D., Cook, D.J.: Automatic video classification: a survey of the literature. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(3), 416–430 (2008)Google Scholar
  2. 2.
    Jiang, Y.-G., Bhattacharya, S., Chang, S.-F., Shah, M.: High-level event recognition in unconstrained videos. Int. J. Multimed. Inf. Retr. 2(2), 73–101 (2013)CrossRefGoogle Scholar
  3. 3.
    Jiang, Y.-G., Ngo, C.-W., Yang, J.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR’07, pp. 494–501, New York, NY, USA. ACM (2007)Google Scholar
  4. 4.
    Aggarwal, J.K., Ryoo, M.S.: Human activity analysis: a review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)Google Scholar
  5. 5.
    Azhar, R., Tuwohingide, D., Kamudi, D., Sarimuddin, Suciati, N.: Batik image classification using sift feature extraction, bag of features and support vector machine. Proced. Comput. Sci. 72, 24–30 (2015). The Third Information Systems International Conference (2015)Google Scholar
  6. 6.
    Uijlings, J.R.R., Duta, I.C., Rostamzadeh, N., Sebe, N.: Realtime video classification using dense HOF/HOG. In: Proceedings of International Conference on Multimedia Retrieval, ICMR’14, pp. 145:145–145:152, New York, NY, USA. ACM (2014)Google Scholar
  7. 7.
    Banerji, S., Verma, A., Liu, C.: LBP and Color Descriptors for Image Classification, pp. 205–225. Springer, Berlin, Heidelberg (2012)Google Scholar
  8. 8.
    Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)Google Scholar
  9. 9.
    Willems, G., Tuytelaars, T., Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Proceedings of the 10th European Conference on Computer Vision: Part II, ECCV’08, pp. 650–663. Springer, Berlin, Heidelberg (2008)Google Scholar
  10. 10.
    Zhang, X., Yang, Y., Zhang, Y., Luan, H., Li, J., Zhang, H., Chua, T.S.: Enhancing video event recognition using automatically constructed semantic-visual knowledge base. IEEE Trans. Multimed. 17(9), 1562–1575 (2015)CrossRefGoogle Scholar
  11. 11.
    Duta, I.C., Uijlings, J.R.R., Nguyen, T.A., Aizawa, K., Hauptmann, A.G., Ionescu, B., Sebe, N.: Histograms of motion gradients for real-time video classification. In: 2016 14th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6 (2016)Google Scholar
  12. 12.
    Ma, Z., Yang, Y., Sebe, N., Zheng, K., Hauptmann, A.G.: Multimedia event detection using a classifier-specific intermediate representation. IEEE Trans. Multimed. 15(7), 1628–1637 (2013)CrossRefGoogle Scholar
  13. 13.
    Chang, X., Yang, Y., Hauptmann, A.G., Xing, E.P., Yu, Y.-L.: Semantic concept discovery for large-scale zero-shot event detection. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 2234–2240. AAAI Press (2015)Google Scholar
  14. 14.
    Chattopadhyay, C., Das, S.: Supervised framework for automatic recognition and retrieval of interaction: a framework for classification and retrieving videos with similar human interactions. IET Comput. Vis. 10(3), 220–227 (2016)CrossRefGoogle Scholar
  15. 15.
    Naphade, M., Smith, J.R., Tesic, J., Chang, S.-F., Hsu, W., Kennedy, L., Hauptmann, A., Curtis, J.: Large-scale concept ontology for multimedia. IEEE MultiMed. 13(3), 86–91 (2006)CrossRefGoogle Scholar
  16. 16.
    Huang, J., Schonfeld, D.: A distributed context-free grammars learning algorithm and its application in video classification. In: 2012 Visual Communications and Image Processing, pp. 1–6 (2012)Google Scholar
  17. 17.
    Si, Z., Pei, M., Yao, B., Zhu, S.C.: Unsupervised learning of event and-or grammar and semantics from video. In: 2011 International Conference on Computer Vision, pp. 41–48 (2011)Google Scholar
  18. 18.
    Ekenel, H.K., Semela, T., Stiefelhagen, R.: Content-based video genre classification using multiple cues. In: Proceedings of the 3rd International Workshop on Automated Information Extraction in Media Production, AIEMPro’10, pp. 21–26, New York, NY, USA. ACM (2010)Google Scholar
  19. 19.
    Huang, Y.-F., Wang, S.-H.: Movie Genre Classification Using SVM with Audio and Video Features, pp. 1–10. Springer, Berlin, Heidelberg (2012)Google Scholar
  20. 20.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefGoogle Scholar
  21. 21.
    Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3485–3492 (2010)Google Scholar
  22. 22.
    Varghese, J., Ramachandran Nair, K.N.: Detecting video shot boundaries by modified tomography. In: Proceedings of the Third International Symposium on Computer Vision and the Internet, VisionNet’16, pp. 131–135, New York, NY, USA. ACM (2016)Google Scholar
  23. 23.
    Hamed, A.A.M., Li, R., Xiaoming, Z., Xu, C.: Video genre classification using weighted kernel logistic regression. Adv. MultiMed. 2013, 2:2–2:2 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceMahatma Gandhi UniversityKottayamIndia
  2. 2.ViswaJyothi College of Engineering and TechnologyVazhakulamIndia

Personalised recommendations