Techniques to Extract Topical Experts in Twitter: A Survey

  • Kuljeet KaurEmail author
  • Divya Bansal
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 106)


An Online Social Network (OSN) such as Facebook, Twitter, Google+,etc., socially connects users around the world. Through these social media platforms, users generally form a virtual network which is based on mutual trust without any personal interaction. As more and more users are joining OSNs, the topical expert identification is a literal necessity to ensure the relevance and credibility of content provided by various users. In this paper, we have reviewed the existing techniques for extraction of topical expertise in Twitter. We provide an overview of various attributes, dataset, and methods adopted for topical expertise detection and extraction.


Topical experts OSN Twitter Security 


  1. 1.
    Microblogging (wiki article). Accessed 12 Feb 2016
  2. 2.
    Sullivan, D.: Twitter Improves “Who to Follow” Results & Gains Advanced Search Page. Accessed 15 Feb 2016 (2011)
  3. 3.
    Malhotra, A., Totti, L., Meira, W., Jr., Kumaraguru, P., Almeida, V.: Studying user footprints in different online social networks. In: Proceedings of ACM International Conference on Advances in Social Networks Analysis and Mining, Washington DC, USA, pp. 1065–1070 (2012)Google Scholar
  4. 4.
    Weng, J., Lim, E., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential Twitterers. In: Proceedings of 3rd ACM International Conference on Web Search and Data Mining, New York, USA, pp. 261–270Google Scholar
  5. 5.
    Blei, David M., Ng, Andrew Y., Jordan, Michael I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  6. 6.
    Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of 11th ACM International Conference on World Wide Web, pp. 517–526 (2002)Google Scholar
  7. 7.
    Pal, A., Counts, S.: Identifying topical authorities in microblogs. In: Proceedings of 4th ACM International Conference on Web Search and Data Mining, New York, USA, pp. 45–54 (2011)Google Scholar
  8. 8.
    Clustering Algorithms (wiki Article). Available at Accessed on March 3, 2016
  9. 9.
    Bhattacharya, P., Ghosh, S., Kulshrestha, J., Mondal, M., Bilal Zafar, M., Ganguly, N., Gummadi, K.P.: Deep Twitter diving: exploring topical groups in microblogs at scale. In: Proceedings of 17th ACM Conference on Computer-Supported Cooperative Work & Social Computing, New York, USA, pp. 197–210 (2014)Google Scholar
  10. 10.
    Fortunato, Santo: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Purohit, H., Dow, A., Olonso, O., Duan, L., Haas, K.: User taglines: alternative presentations of expertise and interest in social media. In: Proceedings of IEEE International Conference on Social Informatics, Lausanne, Switzerland, pp. 236–243Google Scholar
  12. 12.
    Wagner, C., Liao, V., Pirolli, P., Nelson, L., Strohmaier, M.: It’s not in their tweets: modeling topical expertise of Twitter users. In: Proceedings of IEEE International Conference on Social Computing, Amsterdam, The Netherlands, pp. 91–100 (2012)Google Scholar
  13. 13.
    Pohl, D., Bouchachia, A., Hellwagner, H.: Online processing of social media data for emergency management. In: Proceedings of IEEE International Conference on Machine Learning and Applications, Miami, Florida, pp. 408–413 (2013)Google Scholar
  14. 14.
    Canini, K.R., Suh, B., Pirolli, P.L.: Finding credible information sources in social networks based on content and social structure. In: Proceedings of 3rd IEEE International Conference on Social Computing, Boston, Massachusetts, pp. 1–8 (2011)Google Scholar
  15. 15.
    Ghosh, S., Sharma, N., Benevenuto, F., Ganguly, N., Gummadi, K.P.: Cognos: crowdsourcing search for topic experts in microblogs. In: Proceedings of 35th ACM International Conference on Research and Development in Information Retrieval, New York, USA, pp. 575–590 (2012)Google Scholar
  16. 16.
    Clarke, C.L.A., Cormack, G.V., Tudhope, E.A.: Relevance ranking for one to three term queries. Informat. Process. Manag. 36(2) (2000)Google Scholar
  17. 17.
    Wu, S., Hofman, J.M., Mason, W.A., Watts, D.J.: Who says what to whom on Twitter. In: Proceedings of 20th ACM International Conference on World Wide Web, New York, USA, pp. 705–714 (2011)Google Scholar
  18. 18.
    Snowball Sampling (wiki Article). Accessed 26 Feb 2016
  19. 19.
    Sharma, Naveen, Ghosh, Saptarshi, Benevenuto, Fabricio, Ganguly, Niloy, Gummadi, Krishna P.: Inferring Who-is-Who in the Twitter social network. Proc. ACM SIGCOMM Compu. Commun. Rev. 42(4), 533–538 (2012)CrossRefGoogle Scholar
  20. 20.
    Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R., Jhingran, A., Kanungo, T., Rajagopalan, S., Tomkins, A., Tomlin, J.A., Zien, J.Y.: Semtag and seeker: bootstrapping the semantic web via automated semantic annotation. In: Proceedings of 12th ACM International Conference on World Wide Web, New York, USA, pp. 178–186 (2003)Google Scholar
  21. 21.
    Ramage, R., Dumais, S., Liebling, D.: Characterizing microblogs with topic models. In: Proceedings of 4th AAAI Conference on Weblogs and Social Media, Washington DC, USA, pp. 130–137Google Scholar
  22. 22.
    Kim, D., Jo, Y., Moon, C., Oh, A.: Analysis of Twitter lists as a potential source for discovering latent characteristics of users. In: Proceedings of ACM Workshop on Microblogging, Georgia, USA (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.PEC University of TechnologyChandigarhIndia

Personalised recommendations