Advertisement

Neural-Network-Based Approach for Finite-Time Optimal Control

  • Ruizhuo SongEmail author
  • Qinglai Wei
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 166)

Abstract

This chapter proposes a novel finite-time optimal control method based on input-output data for unknown nonlinear systems using ADP algorithm. In this method, the single-hidden layer feed-forward network (SLFN) with extreme learning machine (ELM) is used to construct the data-based identifier of the unknown system dynamics. Based on the data-based identifier, the finite-time optimal control method is established by ADP algorithm. Two other SLFNs with ELM are used in ADP method to facilitate the implementation of the iterative algorithm, which aim to approximate the performance index function and the optimal control law at each iteration, respectively. A simulation example is provided to demonstrate the effectiveness of the proposed control scheme.

References

  1. 1.
    Duncan, T., Guo, L., Pasik-Duncan, B.: Adaptive continuous-time linear quadratic gaussian control. IEEE Trans. Autom. Control 44(9), 1653–1662 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gabasov, R., Kirillova, F., Balashevich, N.: Open-loop and closed-loop optimization of linear control systems. Asian J. Control 2(3), 155–168 (2000)CrossRefGoogle Scholar
  3. 3.
    Jin, X., Yang, G., Peng, L.: Robust adaptive tracking control of distributed delay systems with actuator and communication failures. Asian J. Control 14(5), 1282–1298 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhang, H., Song, R., Wei, Q., Zhang, T.: Optimal tracking control for a class of nonlinear discrete-time systems with time delays based on heuristic dynamic programming. IEEE Trans. Neural Netw. 22(12), 1851–1862 (2011)CrossRefGoogle Scholar
  5. 5.
    Guardabassi, G., Savaresi, S.: Virtual reference direct design method: an off-line approach to data-based control system design. IEEE Trans. Autom. Control 45(5), 954–959 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jagannathan, S.: Neural Network Control of Nonlinear Discrete-Time Systems. CRC Press, Boca Raton (2006)zbMATHGoogle Scholar
  7. 7.
    Yu, W.: Recent Advances in Intelligent Control Systems. Springer, London (2009)CrossRefGoogle Scholar
  8. 8.
    Fernández-Navarro, F., Hervás-Martínez, C., Gutierrez, P.: Generalised Gaussian radial basis function neural networks. Soft Comput. 17, 519–533 (2013)CrossRefGoogle Scholar
  9. 9.
    Richert, D., Masaud, K., Macnab, C.: Discrete-time weight updates in neural-adaptive control. Soft Comput. 17, 431–444 (2013)CrossRefGoogle Scholar
  10. 10.
    Kuntal, M., Pratihar, D., Nath, A.: Analysis and synthesis of laser forming process using neural networks and neuro-fuzzy inference system. Soft Comput. 17, 849–865 (2013)CrossRefGoogle Scholar
  11. 11.
    Huang, G., Chen, L., Siew, C.: Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 17(4), 879–892 (2006)CrossRefGoogle Scholar
  12. 12.
    Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4, 251–257 (1991)CrossRefGoogle Scholar
  13. 13.
    Leshno, M., Lin, V., Pinkus, A., Schocken, S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 6, 861–867 (1993)CrossRefGoogle Scholar
  14. 14.
    Zhang, H., Wei, Q., Luo, Y.: A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy HDP iteration algorithm. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 38(4), 937–942 (2008)CrossRefGoogle Scholar
  15. 15.
    Huang, G., Siew, C.: Extreme learning machine: RBF network case. In: Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision (ICARCV 2004), Dec 6–9, Kunming, China, vol. 2, pp. 1029–1036. (2004)Google Scholar
  16. 16.
    Wang, F., Jin, N., Liu, D., Wei, Q.: Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with \(\epsilon \)-error bound. IEEE Transactions on Neural Networks 22, 24–36 (2011)CrossRefGoogle Scholar
  17. 17.
    Zhang, R., Huang, G., Sundararajan, N., Saratchandran, P.: Multi-category classification using extreme learning machine for microarray gene expression cancer diagnosis. IEEE/ACM Trans. Comput. Biol. Bioinform. 4(3), 485–495 (2007)CrossRefGoogle Scholar
  18. 18.
    Tamura, S., Tateishi, M.: Capabilities of a fourlayered feedforward neural network: four layers versus three. IEEE Trans. Neural Netw. 8(2), 251–255 (1997)CrossRefGoogle Scholar
  19. 19.
    Huang, G.: Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14(2), 274–281 (2003)CrossRefGoogle Scholar
  20. 20.
    Huang, G., Wang, D., Lan, Y.: Extreme learning machines: a survey. Int. J. Mach. Learn. Cybern. 2(2), 107–122 (2011)CrossRefGoogle Scholar
  21. 21.
    Huang, G., Zhu, Q., Siew, C.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of Science and Technology BeijingBeijingChina
  2. 2.Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations