Advertisement

Characterization of Kinoform X-Ray Lens Using Image Stitching Method Based on Marked Structures

  • Wenqiang Hua
  • Keliang Liao
  • Zhongzhu Zhu
  • Qili He
  • Weifan Sheng
  • Peiping Zhu
  • Qingxi Yuan
  • Jie Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 875)

Abstract

The unique structure of the kinoform x-ray lens render most image stitching methods difficult to realize the image registration of sub-images acquired by commercial optical microscope with the high power objective, yet it is important to evaluate the fabrication defects using image processing methods in the foundation of the stitched image. In this work we demonstrate the quantitative characterization of the kinoform x-ray lens by using image stitching method based on extracting the geometric features of dedicated marked structures, which could not only avoid the problem of lacking effective features in the lens structure but also provide a reference for the scaling and rotation operations during the image alignment. The proposed stitching method provides us a convenient way to analyze the shape error and various fabrication imperfections for the kinoform x-ray lens.

Keywords

Image stitching Image process X-ray optics 

Notes

Acknowledgments

This work is supported by China Postdoctoral Science Foundation (2017M610996), National Key R&D Program of China (2017YFA0403801), National Natural Science Foundation of China (11505278,11675253).

References

  1. 1.
    Alianelli, L., Sawhney, K.J.S., Barrett, R., Pape, I., Malik, A., Wilson, M.C.: High efficiency nano-focusing kinoform optics for synchrotron radiation. Opt. Express 19(12), 11120–11127 (2011)CrossRefGoogle Scholar
  2. 2.
    Evans-Lutterodt, K., et al.: Single-element elliptical hard x-ray micro-optics. Opt. Express 11(8), 919–926 (2003)CrossRefGoogle Scholar
  3. 3.
    Yan, H.: X-ray nanofocusing by kinoform lenses: a comparative study using different modeling approaches. Phys. Rev. B 81(7), 075402 (2010)CrossRefGoogle Scholar
  4. 4.
    Nazmov, V., et al.: LIGA fabrication of x-ray Nickel lenses. Microsyst. Technol. 11(4–5), 292–297 (2005).  https://doi.org/10.1007/s00542-004-0435-yCrossRefGoogle Scholar
  5. 5.
    Nazmov, V., et al.: Kinoform x-ray lens creation in polymer materials by deep x-ray lithography. Nucl. Instrum. Methods Phys. Res. Sect. B 217(3), 409–416 (2004).  https://doi.org/10.1016/j.nimb.2003.11.002CrossRefGoogle Scholar
  6. 6.
    Nöhammer, B., Hoszowska, J., Freund, A.K., David, C.: Diamond planar refractive lenses for third- and fourth-generation x-ray sources. J. Synchrotron Radiat. 10(2), 168–171 (2003).  https://doi.org/10.1107/S0909049502019532CrossRefGoogle Scholar
  7. 7.
    Lindeberg, T.: Scale-space theory: a basic tool for analyzing structures at different scales. J. Appl. Stat. 21(1–2), 225–270 (1994).  https://doi.org/10.1080/757582976CrossRefGoogle Scholar
  8. 8.
    Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation. Image Vis. Comput. 13(9), 695–703 (1995).  https://doi.org/10.1016/0262-8856(95)98864-PCrossRefGoogle Scholar
  9. 9.
    Liao, K., Hong, Y., Sheng, W.: Optimized short kinoform lenses for hard x-ray nano-focusing. Opt. Commun. 339, 53–60 (2015).  https://doi.org/10.1016/j.optcom.2014.11.062CrossRefGoogle Scholar
  10. 10.
    Liao, K., et al.: Sub-500 nm hard x-ray focusing by compound long kinoform lenses. Appl. Opt. 55(1), 38–41 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Wenqiang Hua
    • 1
  • Keliang Liao
    • 2
  • Zhongzhu Zhu
    • 2
  • Qili He
    • 2
  • Weifan Sheng
    • 2
  • Peiping Zhu
    • 2
  • Qingxi Yuan
    • 2
  • Jie Wang
    • 1
  1. 1.Institute of Shanghai Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations