Advertisement

Double δ-LBP: A Novel Feature Extraction Method for Facial Expression Recognition

  • Fang Shen
  • Jing Liu
  • Peng Wu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 875)

Abstract

The Local Binary Pattern (LBP) is a widely used descriptor in facial expression recognition due to its efficiency and effectiveness. However, existing facial expression recognition methods based on LBP either ignore different kinds of information, such as details and the contour of faces, or rely on the division of face images, such as dividing the face image into blocks or letting the block centering on landmarks. Considering this problem, to make full use of both detail and contour face information in facial expression recognition, we propose a novel feature extraction method based on double δ-LBP (Dδ-LBP) in this paper. In this method, two δ-LBPs are employed to represent details and the contour of faces separately, which take different kinds of information of facial expression into account. Experiments conducted on both lab-controlled and wild environment databases show that Dδ-LBP outperforms the original LBP method.

Keywords

Facial expression recognition Local binary patterns Feature extraction Principal component analysis Support vector machine 

References

  1. 1.
    Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 765–781 (2011)CrossRefGoogle Scholar
  2. 2.
    Shan, C., Gong, S., Mcowan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)CrossRefGoogle Scholar
  3. 3.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  4. 4.
    Kumari, J., Rajesh, R., Pooja, K.: Facial expression recognition: a survey. Int. Symp. Comput. Vis. Internet 58, 486–491 (2015)Google Scholar
  5. 5.
    Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. Comput. Vis. Pattern Recognit. 9(4), 3025–3032 (2013)Google Scholar
  6. 6.
    Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: 2000 IEEE International Conference on Automatic Face and Gesture Recognition, pp. 484–490 (2000)Google Scholar
  7. 7.
    Lucey, P., Cohn, J.F., Kanade, T., Saragih, J.: The extended Cohn-Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 36, no. 1, pp. 94–101 (2010)Google Scholar
  8. 8.
    Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: 1998 IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998)Google Scholar
  9. 9.
    Lyons, M.J., Budynek, J., Akamatsu, S.: Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12), 1357–1362 (1999)CrossRefGoogle Scholar
  10. 10.
    Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for facial expression analysis. In: Proceedings of the 2005 IEEE International Conference on Multimedia and Expo, vol. 14 (2005)Google Scholar
  11. 11.
    Deng, W., Hu, J., Zhang, S., Guo, J.: DeepEmo: real-world facial expression analysis via deep learning. In: Visual Communications and Image Processing, pp. 1–4 (2016)Google Scholar
  12. 12.
    Ahmed, F., Hossain, E., Bari, A.S.M.H, Shihavuddin, A.: Compound local binary pattern (CLBP) for robust facial expression recognition. In: IEEE International Symposium on Computational Intelligence and Informatics, pp. 391–395 (2011)Google Scholar
  13. 13.
    Lu, S., Yang, J.H., Zhang, B., Zhang, J.Q.: Infrared target detection based on LBP. J. Changchun Univ. Sci. Technol. 32(1), 22–24 (2009)Google Scholar
  14. 14.
    Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing local binary features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1685–1692 (2014)Google Scholar
  15. 15.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. In: Singh, S., Murshed, N., Kropatsch, W. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 399–408. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44732-6_41CrossRefMATHGoogle Scholar
  17. 17.
    Jolliffe, I.T.: Principal Component Analysis, vol. 87, pp. 41–64. Springer, Berlin (1986).  https://doi.org/10.1007/978-1-4757-1904-8. no. 100CrossRefGoogle Scholar
  18. 18.
    Altman, E.I., Marco, G., Varetto, F.: Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks. J. Bank. Financ. 18(3), 505–529 (1994)CrossRefGoogle Scholar
  19. 19.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Artificial IntelligenceXidian UniversityXi’anChina

Personalised recommendations