Advertisement

Sirtuin Modulators and Brain Aging

  • Hale Z. Toklu
  • Almari GinoryEmail author
Chapter

Abstract

The sirtuins are proteins with enzymatic activity, which regulate diverse cellular processes including aging, longevity, inflammation, obesity, and stress resistance. There are seven sirtuins in mammals with varied subcellular localization and enzymatic activity. Of these, SIRT1 exhibits NAD-dependent deacetylase activity, and it has been the most studied isoform to target aging-related neurodegenerative disorders and longevity due to caloric restriction. SIRT activation can exert positive effects in aging-related disorders such as metabolic, cardiovascular, and neurodegenerative diseases; while SIRT1 inhibitors have anticancer properties. Currently, a number of clinical trials are conveyed with modulators of SIRT. This chapter focuses on SIRT activators and their effects on brain aging.

Keywords

Sirtuin SIRT1 Brain Aging Senescence SIRT activators, SIRT inhibitors, central nervous system 

Abbreviations

ALS

Amyotrophic lateral sclerosis

FoxO

Forkhead box O

mTOR

Mammalian target of rapamycin

NAD

Nicotinamide adenine dinucleotide

SIRT

Sirtuin

References

  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75CrossRefGoogle Scholar
  2. Anamika KA, Acharjee P, Acharjee A, Trigun SK (2017) Mitochondrial SIRT3 and neurodegenerative brain disorders. J Chem Neuroanat. pii: S0891-0618(17)30123-0.  https://doi.org/10.1016/j.jchemneu.2017.11.009. [Epub ahead of print]
  3. Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schafer B, Hirsch-Ernst KI, Lampen A (2018) Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res 62(1):1700447.  https://doi.org/10.1002/mnfr.201700447 CrossRefGoogle Scholar
  4. Bahrami SA, Bakhtiari N (2016) Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed Pharmacother 82:8–14CrossRefGoogle Scholar
  5. Bales CW, Kraus WE (2013) Caloric restriction: implications for human cardiometabolic health. J Cardiopulm Rehabil Prev 33:201–208CrossRefGoogle Scholar
  6. Braidy N, Poljak A, Grant R, Jayasena T, Mansour H, Chan-Ling T, Smythe G, Sachdev P, Guillemin GJ (2015) Differential expression of sirtuins in the aging rat brain. Front Cell Neurosci 9:167CrossRefGoogle Scholar
  7. Carafa V, Nebbioso A, Altucci L (2012) Sirtuins and disease: the road ahead. Front Pharmacol 3:4CrossRefGoogle Scholar
  8. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L (2016) Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics 8:61CrossRefGoogle Scholar
  9. Carter CS, Khamiss D, Matheny M, Toklu HZ, Kirichenko N, Strehler KY, Tumer N, Scarpace PJ, Morgan D (2016) Rapamycin versus intermittent feeding: dissociable effects on physiological and behavioral outcomes when initiated early and late in life. J Gerontol A Biol Sci Med Sci 71:866–875CrossRefGoogle Scholar
  10. Chang HM, Wu UI, Lan CT (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47:211–220CrossRefGoogle Scholar
  11. Chen T, Dai SH, Li X, Luo P, Zhu J, Wang YH, Fei Z, Jiang XF (2017) Sirt1-Sirt3 axis regulates human blood-brain barrier permeability in response to ischemia. Redox Biol 14:229–236CrossRefGoogle Scholar
  12. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501:79–90CrossRefGoogle Scholar
  13. Cristofol R, Porquet D, Corpas R, Coto-Montes A, Serret J, Camins A, Pallas M, Sanfeliu C (2012) Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J Pineal Res 52:271–281CrossRefGoogle Scholar
  14. Dias GP, Cocks G, Do Nascimento Bevilaqua MC, Nardi AE, Thuret S (2016) Resveratrol: a potential hippocampal plasticity enhancer. Oxidative Med Cell Longev 2016:9651236CrossRefGoogle Scholar
  15. Dolinsky VW, Dyck JR (2011) Calorie restriction and resveratrol in cardiovascular health and disease. Biochim Biophys Acta 1812:1477–1489CrossRefGoogle Scholar
  16. Donato AJ, Magerko KA, Lawson BR, Durrant JR, Lesniewski LA, Seals DR (2011) SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans. J Physiol 589:4545–4554CrossRefGoogle Scholar
  17. Dornas WC, Silva M, Tavares R, De Lima WG, Dos Santos RC, Pedrosa ML, Silva ME (2015) Efficacy of the superoxide dismutase mimetic tempol in animal hypertension models: a meta-analysis. J Hypertens 33:14–23CrossRefGoogle Scholar
  18. Ehninger D, Neff F, Xie K (2014) Longevity, aging and rapamycin. Cell Mol Life Sci 71:4325–4346CrossRefGoogle Scholar
  19. Ekiz A, Ozdemir-Kumral ZN, Ersahin M, Tugtepe H, Ogunc AV, Akakin D, Kiran D, Ozsavci D, Biber N, Hakan T, Yegen BC, Sener G, Toklu HZ (2017) Functional and structural changes of the urinary bladder following spinal cord injury; treatment with alpha lipoic acid. Neurourol Urodyn 36:1061–1068CrossRefGoogle Scholar
  20. Engel GL, Marella S, Kaun KR, Wu J, Adhikari P, Kong EC, Wolf FW (2016) Sir2/Sirt1 links acute inebriation to presynaptic changes and the development of alcohol tolerance, preference, and reward. J Neurosci 36:5241–5251CrossRefGoogle Scholar
  21. Ersahin M, Toklu HZ, Cetinel S, Yuksel M, Erzik C, Berkman MZ, Yegen BC, Sener G (2010) Alpha lipoic acid alleviates oxidative stress and preserves blood brain permeability in rats with subarachnoid hemorrhage. Neurochem Res 35:418–428CrossRefGoogle Scholar
  22. Figuera-Losada M, Stathis M, Dorskind JM, Thomas AG, Bandaru VV, Yoo SW, Westwood NJ, Rogers GW, McArthur JC, Haughey NJ, Slusher BS, Rojas C (2015) Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One 10:e0124481CrossRefGoogle Scholar
  23. Fukui K, Masuda A, Hosono A, Suwabe R, Yamashita K, Shinkai T, Urano S (2014) Changes in microtubule-related proteins and autophagy in long-term vitamin E-deficient mice. Free Radic Res 48:649–658CrossRefGoogle Scholar
  24. Gano LB, Donato AJ, Pasha HM, Hearon CM Jr, Sindler AL, Seals DR (2014) The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. Am J Physiol Heart Circ Physiol 307:H1754–H1763CrossRefGoogle Scholar
  25. Ghosh HS, McBurney M, Robbins PD (2010) SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5:e9199CrossRefGoogle Scholar
  26. Giacosa A, Barale R, Bavaresco L, Faliva MA, Gerbi V, La Vecchia C, Negri E, Opizzi A, Perna S, Pezzotti M, Rondanelli M (2016) Mediterranean way of drinking and longevity. Crit Rev Food Sci Nutr 56:635–640CrossRefGoogle Scholar
  27. Greco SJ, Hamzelou A, Johnston JM, Smith MA, Ashford JW, Tezapsidis N (2011) Leptin boosts cellular metabolism by activating AMPK and the sirtuins to reduce tau phosphorylation and beta-amyloid in neurons. Biochem Biophys Res Commun 414:170–174CrossRefGoogle Scholar
  28. Hall AM, Brennan GP, Nguyen TM, Singh-Taylor A, Mun HS, Sargious MJ, Baram TZ (2017) The role of Sirt1 in epileptogenesis. eNeuro 4CrossRefGoogle Scholar
  29. Hamel E (2015) Cerebral circulation: function and dysfunction in Alzheimer’s disease. J Cardiovasc Pharmacol 65:317–324CrossRefGoogle Scholar
  30. Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflammaging. Prog Neurobiol 127–128:46–63CrossRefGoogle Scholar
  31. Haughey NJ, Mattson MP (2003) Alzheimer’s amyloid beta-peptide enhances ATP/gap junction-mediated calcium-wave propagation in astrocytes. NeuroMolecular Med 3:173–180CrossRefGoogle Scholar
  32. Hori YS, Kuno A, Hosoda R, Horio Y (2013) Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress. PLoS One 8:e73875CrossRefGoogle Scholar
  33. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238CrossRefGoogle Scholar
  34. Hurtado O, Hernandez-Jimenez M, Zarruk JG, Cuartero MI, Ballesteros I, Camarero G, Moraga A, Pradillo JM, Moro MA, Lizasoain I (2013) Citicoline (CDP-choline) increases Sirtuin1 expression concomitant to neuroprotection in experimental stroke. J Neurochem 126:819–826CrossRefGoogle Scholar
  35. Hussain H, Green IR, Ali I, Khan IA, Ali Z, Al-Sadi AM, Ahmed I (2017) Ursolic acid derivatives for pharmaceutical use: a patent review (2012–2016). Expert Opin Ther Pat 27:1061–1072CrossRefGoogle Scholar
  36. Hwang ES, Song SB (2017) Nicotinamide is an inhibitor of SIRT1 in vitro, but can be a stimulator in cells. Cell Mol Life Sci 74:3347–3362CrossRefGoogle Scholar
  37. Islam MS, Wei FY, Ohta K, Shigematsu N, Fukuda T, Tomizawa K, Yoshizawa T, Yamagata K (2018) Sirtuin 7 is involved in the consolidation of fear memory in mice. Biochem Biophys Res Commun 495:261–266CrossRefGoogle Scholar
  38. Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14:141–153PubMedGoogle Scholar
  39. Khader A, Yang WL, Hansen LW, Rajayer SR, Prince JM, Nicastro JM, Coppa GF, Wang P (2017) SRT1720, a sirtuin 1 activator, attenuates organ injury and inflammation in sepsis. J Surg Res 219:288–295CrossRefGoogle Scholar
  40. Kim HD, Hesterman J, Call T, Magazu S, Keeley E, Armenta K, Kronman H, Neve RL, Nestler EJ, Ferguson D (2016) SIRT1 mediates depression-like behaviors in the nucleus accumbens. J Neurosci 36:8441–8452CrossRefGoogle Scholar
  41. Kireev RA, Vara E, Tresguerres JA (2013) Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats. Biogerontology 14:431–442CrossRefGoogle Scholar
  42. La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer’s disease. Nutrients 6:5453–5472CrossRefGoogle Scholar
  43. Lahusen TJ, Deng CX (2015) SRT1720 induces lysosomal-dependent cell death of breast cancer cells. Mol Cancer Ther 14:183–192CrossRefGoogle Scholar
  44. Lange KW, Li S (2018) Resveratrol, pterostilbene, and dementia. Biofactors 44(1):83–90.  https://doi.org/10.1002/biof.1396 CrossRefGoogle Scholar
  45. Lara E, Mai A, Calvanese V, Altucci L, Lopez-Nieva P, Martinez-Chantar ML, Varela-Rey M, Rotili D, Nebbioso A, Ropero S, Montoya G, Oyarzabal J, Velasco S, Serrano M, Witt M, Villar-Garea A, Imhof A, Mato JM, Esteller M, Fraga MF (2009) Salermide, a sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28:781–791CrossRefGoogle Scholar
  46. Libert S, Guarente L (2013) Metabolic and neuropsychiatric effects of calorie restriction and sirtuins. Annu Rev Physiol 75:669–684CrossRefGoogle Scholar
  47. Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM, Kapur K, Bergmann S, Preisig M, Otowa T, Kendler KS, Chen X, Hettema JM, Van Den Oord EJ, Rubio JP, Guarente L (2011) SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 147:1459–1472CrossRefGoogle Scholar
  48. Liu FC, Liao CH, Chang YW, Liou JT, Day YJ (2009) Splitomicin suppresses human platelet aggregation via inhibition of cyclic AMP phosphodiesterase and intracellular Ca++ release. Thromb Res 124:199–207CrossRefGoogle Scholar
  49. Lopez MS, Dempsey RJ, Vemuganti R (2015) Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 89:75–82CrossRefGoogle Scholar
  50. Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q (2007) Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol 74:1078–1090CrossRefGoogle Scholar
  51. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulinska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M (2017) Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 9:1477–1536Google Scholar
  52. Miao Y, Zhao S, Gao Y, Wang R, Wu Q, Wu H, Luo T (2016) Curcumin pretreatment attenuates inflammation and mitochondrial dysfunction in experimental stroke: the possible role of Sirt1 signaling. Brain Res Bull 121:9–15CrossRefGoogle Scholar
  53. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, De Cabo R (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6:836–843CrossRefGoogle Scholar
  54. Moretto J, Guglielmetti AS, Tournier-Nappey M, Martin H, Prigent-Tessier A, Marie C, Demougeot C (2017) Effects of a chronic l-arginine supplementation on the arginase pathway in aged rats. Exp Gerontol 90:52–60CrossRefGoogle Scholar
  55. Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171CrossRefGoogle Scholar
  56. Nguyen LT, Chen H, Mak C, Zaky A, Pollock C, Saad S (2018) Srt1720 attenuates obesity and insulin resistance but not liver damage in the offspring due to maternal and postnatal high-fat diet consumption. Am J Physiol Endocrinol Metab 315(2):E196–E203.  https://doi.org/10.1152/ajpendo.00472.2017 [Epub ahead of print]CrossRefGoogle Scholar
  57. Nikolai S, Pallauf K, Huebbe P, Rimbach G (2015) Energy restriction and potential energy restriction mimetics. Nutr Res Rev 28:100–120CrossRefGoogle Scholar
  58. Okun E, Marton D, Cohen D, Griffioen K, Kanfi Y, Illouz T, Madar R, Cohen HY (2017) Sirt6 alters adult hippocampal neurogenesis. PLoS One 12:e0179681CrossRefGoogle Scholar
  59. Paraiso AF, Mendes KL, Santos SH (2013) Brain activation of SIRT1: role in neuropathology. Mol Neurobiol 48:681–689CrossRefGoogle Scholar
  60. Poulose SM, Thangthaeng N, Miller MG, Shukitt-Hale B (2015) Effects of pterostilbene and resveratrol on brain and behavior. Neurochem Int 89:227–233CrossRefGoogle Scholar
  61. Prins SA, Przybycien-Szymanska MM, Rao YS, Pak TR (2014) Long-term effects of peripubertal binge EtOH exposure on hippocampal microRNA expression in the rat. PLoS One 9:e83166CrossRefGoogle Scholar
  62. Pusalkar M, Ghosh S, Jaggar M, Husain BF, Galande S, Vaidya VA (2016) Acute and chronic electroconvulsive seizures (ECS) differentially regulate the expression of epigenetic machinery in the adult rat hippocampus. Int J Neuropsychopharmacol 19(9):pii: pyw040.  https://doi.org/10.1093/ijnp/pyw040 Print 2016 SepCrossRefGoogle Scholar
  63. Qi Z, Xia J, Xue X, He Q, Ji L, Ding S (2016) Long-term treatment with nicotinamide induces glucose intolerance and skeletal muscle lipotoxicity in normal chow-fed mice: compared to diet-induced obesity. J Nutr Biochem 36:31–41CrossRefGoogle Scholar
  64. Qian C, Jin J, Chen J, Li J, Yu X, Mo H, Chen G (2017) SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep 16:9627–9635CrossRefGoogle Scholar
  65. Rizk SM, El-Maraghy SA, Nassar NN (2014) A novel role for SIRT-1 in L-arginine protection against STZ induced myocardial fibrosis in rats. PLoS One 9:e114560CrossRefGoogle Scholar
  66. Sarubbo F, Moranta D, Asensio VJ, Miralles A, Esteban S (2017) Effects of resveratrol and other polyphenols on the most common brain agerelated diseases. Curr Med Chem 24:4245–4266Google Scholar
  67. Sarubbo F, Ramis MR, Kienzer C, Aparicio S, Esteban S, Miralles A, Moranta D (2018) Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal Sirt1 levels improving cognition in aged rats. J NeuroImmune Pharmacol 13(1):24–38.  https://doi.org/10.1007/s11481-017-9759-0 CrossRefGoogle Scholar
  68. Satoh A, Imai S (2014) Systemic regulation of mammalian ageing and longevity by brain sirtuins. Nat Commun 5:4211CrossRefGoogle Scholar
  69. Satoh A, Imai SI, Guarente L (2017) The brain, sirtuins, and ageing. Nat Rev Neurosci 18:362–374CrossRefGoogle Scholar
  70. Scarpace PJ, Matheny M, Strehler KY, Toklu HZ, Kirichenko N, Carter CS, Morgan D, Tumer N (2016) Rapamycin normalizes serum leptin by alleviating obesity and reducing leptin synthesis in aged rats. J Gerontol A Biol Sci Med Sci 71:891–899CrossRefGoogle Scholar
  71. Secades JJ, Lorenzo JL (2006) Citicoline: pharmacological and clinical review, 2006 update. Methods Find Exp Clin Pharmacol 28(Suppl B):1–56PubMedGoogle Scholar
  72. Shay KP, Moreau RF, Smith EJ, Smith AR, Hagen TM (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790:1149–1160CrossRefGoogle Scholar
  73. Shetty PK, Galeffi F, Turner DA (2014) Nicotinamide pre-treatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia. Neurobiol Dis 62:469–478CrossRefGoogle Scholar
  74. Sidorova-Darmos E, Wither RG, Shulyakova N, Fisher C, Ratnam M, Aarts M, Lilge L, Monnier PP, Eubanks JH (2014) Differential expression of sirtuin family members in the developing, adult, and aged rat brain. Front Aging Neurosci 6:333CrossRefGoogle Scholar
  75. Skibska B, Goraca A (2015) The protective effect of lipoic acid on selected cardiovascular diseases caused by age-related oxidative stress. Oxidative Med Cell Longev 2015:313021CrossRefGoogle Scholar
  76. Stohr J, Novotny J, Bourova L, Svoboda P (2005) Modulation of adenylyl cyclase activity in young and adult rat brain cortex. Identification of suramin as a direct inhibitor of adenylyl cyclase. J Cell Mol Med 9:940–952CrossRefGoogle Scholar
  77. Tibullo D, Li Volti G, Giallongo C, Grasso S, Tomassoni D, Anfuso CD, Lupo G, Amenta F, Avola R, Bramanti V (2017) Biochemical and clinical relevance of alpha lipoic acid: antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm Res 66:947–959CrossRefGoogle Scholar
  78. Toklu HZ, Hakan T, Biber N, Solakoglu S, Ogunc AV, Sener G (2009) The protective effect of alpha lipoic acid against traumatic brain injury in rats. Free Radic Res 43:658–667CrossRefGoogle Scholar
  79. Toklu HZ, Hakan T, Celik H, Biber N, Erzik C, Ogunc AV, Akakin D, Cikler E, Cetinel S, Ersahin M, Sener G (2010a) Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats. J Spinal Cord Med 33:401–409CrossRefGoogle Scholar
  80. Toklu HZ, Sehirli O, Ersahin M, Suleymanoglu S, Yiginer O, Emekli-Alturfan E, Yarat A, Yegen BC, Yegen G (2010b) Resveratrol improves cardiovascular function and reduces oxidative organ damage in the renal, cardiovascular and cerebral tissues of two-kidney, one-clip hypertensive rats. J Pharm Pharmacol 62:1784–1793CrossRefGoogle Scholar
  81. Toklu HZ, Bruce EB, Sakarya Y, Carter CS, Morgan D, Matheny MK, Kirichenko N, Scarpace PJ, Tumer N (2016) Anorexic response to rapamycin does not appear to involve a central mechanism. Clin Exp Pharmacol Physiol 43:802–807CrossRefGoogle Scholar
  82. Toklu HZ, Scarpace PJ, Sakarya Y, Kirichenko N, Matheny M, Bruce EB, Carter CS, Morgan D, Tumer N (2017) Intracerebroventricular tempol administration in older rats reduces oxidative stress in the hypothalamus but does not change STAT3 signalling or SIRT1/AMPK pathway. Appl Physiol Nutr Metab 42:59–67CrossRefGoogle Scholar
  83. Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M (2007) Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem 2:1419–1431CrossRefGoogle Scholar
  84. Tucker KL (2016) Nutrient intake, nutritional status, and cognitive function with aging. Ann N Y Acad Sci 1367:38–49CrossRefGoogle Scholar
  85. Valdecantos MP, Perez-Matute P, Gonzalez-Muniesa P, Prieto-Hontoria PL, Moreno-Aliaga MJ, Martinez JA (2012) Lipoic acid improves mitochondrial function in nonalcoholic steatosis through the stimulation of sirtuin 1 and sirtuin 3. Obesity (Silver Spring) 20:1974–1983CrossRefGoogle Scholar
  86. Villalba JM, Alcain FJ (2012) Sirtuin activators and inhibitors. Biofactors 38:349–359CrossRefGoogle Scholar
  87. Wang D, Li Z, Zhang Y, Wang G, Wei M, Hu Y, Ma S, Jiang Y, Che N, Wang X, Yao J, Yin J (2016) Targeting of microRNA-199a-5p protects against pilocarpine-induced status epilepticus and seizure damage via SIRT1-p53 cascade. Epilepsia 57:706–716CrossRefGoogle Scholar
  88. Wang H, Jo YJ, Oh JS, Kim NH (2017) Quercetin delays postovulatory aging of mouse oocytes by regulating SIRT expression and MPF activity. Oncotarget 8:38631–38641PubMedPubMedCentralGoogle Scholar
  89. Watroba M, Dudek I, Skoda M, Stangret A, Rzodkiewicz P, Szukiewicz D (2017) Sirtuins, epigenetics and longevity. Ageing Res Rev 40:11–19CrossRefGoogle Scholar
  90. Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126:119–145CrossRefGoogle Scholar
  91. Wong DW, Soga T, Parhar IS (2015) Aging and chronic administration of serotonin-selective reuptake inhibitor citalopram upregulate Sirt4 gene expression in the preoptic area of male mice. Front Genet 6:281CrossRefGoogle Scholar
  92. Wozniak L, Skapska S, Marszalek K (2015) Ursolic acid – a pentacyclic triterpenoid with a wide spectrum of pharmacological activities. Molecules 20:20614–20641CrossRefGoogle Scholar
  93. Wu G, Meininger CJ (2000) Arginine nutrition and cardiovascular function. J Nutr 130:2626–2629CrossRefGoogle Scholar
  94. Yin J, Han P, Tang Z, Liu Q, Shi J (2015) Sirtuin 3 mediates neuroprotection of ketones against ischemic stroke. J Cereb Blood Flow Metab 35:1783–1789CrossRefGoogle Scholar
  95. You M, Jogasuria A, Taylor C, Wu J (2015) Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg Nutr 4:88–100PubMedPubMedCentralGoogle Scholar
  96. Yu J, Wu Y, Yang P (2016) High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. J Neurochem 137:371–383CrossRefGoogle Scholar
  97. Zhang F, Wang S, Gan L, Vosler PS, Gao Y, Zigmond MJ, Chen J (2011) Protective effects and mechanisms of sirtuins in the nervous system. Prog Neurobiol 95:373–395CrossRefGoogle Scholar
  98. Zhang L, Zou J, Chai E, Qi Y, Zhang Y (2014) Alpha-lipoic acid attenuates cardiac hypertrophy via downregulation of PARP-2 and subsequent activation of SIRT-1. Eur J Pharmacol 744:203–210CrossRefGoogle Scholar
  99. Zhang XS, Wu Q, Wu LY, Ye ZN, Jiang TW, Li W, Zhuang Z, Zhou ML, Zhang X, Hang CH (2016) Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis 7:e2416CrossRefGoogle Scholar
  100. Zhang M, Tang J, Li Y, Xie Y, Shan H, Chen M, Zhang J, Yang X, Zhang Q, Yang X (2017a) Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1alpha/SIRT3 pathway involved. Chem Biol Interact 277:168–175CrossRefGoogle Scholar
  101. Zhang W, Wei R, Zhang L, Tan Y, Qian C (2017b) Sirtuin 6 protects the brain from cerebral ischemia/reperfusion injury through NRF2 activation. Neuroscience 366:95–104CrossRefGoogle Scholar
  102. Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, Xu H, Yang Y, Poon W, Fei Z (2012) Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol 237:489–498CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Clinical SciencesUniversity of Central Florida College of MedicineOrlandoUSA
  2. 2.HCA North Florida DivisionGraduate Medical EducationGainesvilleUSA
  3. 3.Graduate Medical EducationNorth Florida Regional Medical CenterGainesvilleUSA

Personalised recommendations