Novel Classification Perspective of Geroprotective and Senolytic Drugs as an Antiaging Strategy

  • Karolin Yanar


Aging is an inevitable, physiologically irreversible, and progressive process. It involves various detrimental changes in the ability to maintain cellular homeostasis. During the aging period, senescent cells are accumulated. Due to the significant medical advances in the treatment of various life-threatening diseases, life expectancy is rising day by day. Thus, higher speed of population aging brings enhanced prevalence of age-related disorders. Increasing mid-life quality and extending the life span of aging individuals seem possible by decreasing the rate of aging process with the help of various pharmacologically active substances called as geroprotective or senolytic drugs. Several numbers of naturally found and synthetic substances may provide a source of therapeutic drugs which are proposed to have some geroprotective or senolytic effects, reducing the rate of aging and extending the life span. These therapeutic drugs have some beneficial effects on cellular metabolism such as antioxidant, free radical scavenger, immunomodulator, and metal chelator activities. Some of the aforementioned drugs are called as smart molecules because of their pluripotency effects. Attributed to their properties, these drugs may overcome impaired cellular metabolic homeostasis. This chapter aimed to classify geroprotective and senolytic drugs via their structural properties and pharmacological mechanisms.


Antiaging Antioxidant Caloric restriction Immunomodulator Geroprotective drugs 


  1. Aggarwal N, Razvi S (2013) Thyroid and aging or the aging thyroid? An evidence-based analysis of the literature. J Thyroid Res 2013:481287CrossRefGoogle Scholar
  2. Anisimov VN (2001) Life span extension and cancer risk: myths and reality. Exp Gerontol 36(7):1101–1136CrossRefGoogle Scholar
  3. Arakawa M, Ishimura A, Arai Y, Kawabe K, Suzuki S, Ishige K, Ito Y (2007) N-acetylcysteine and ebselen but not nifedipine protected cerebellar granule neurons against 4-hydroxynonenal-induced neuronal death. Neurosci Res 57(2):220–229CrossRefGoogle Scholar
  4. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21(1):3–12CrossRefGoogle Scholar
  5. Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6(6):593–597CrossRefGoogle Scholar
  6. Atukeren P, Aydin S, Uslu E, Gumustas M, Cakatay U (2010) Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid. Oxidative Med Cell Longev 3(3):206–213CrossRefGoogle Scholar
  7. Aune SE, Herr DJ, Mani SK, Menick DR (2014) Selective inhibition of class I but not class IIb histone deacetylases exerts cardiac protection from ischemia reperfusion. J Mol Cell Cardiol 72:138–145CrossRefGoogle Scholar
  8. Avantaggiato A, Palmieri A, Bertuzzi G, Carinci F (2014) Fibroblasts behavior after N-acetylcysteine and amino acids exposure: extracellular matrix gene expression. Rejuvenation Res 17(3):285–290CrossRefGoogle Scholar
  9. Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Farzadnia M, Khazaei M (2017) Thymoquinone protects the rat kidneys against renal fibrosis. Res Pharm Sci 12(6):479CrossRefGoogle Scholar
  10. Berger MM (2005) Can oxidative damage be treated nutritionally? Clin Nutr 24(2):172–183CrossRefGoogle Scholar
  11. Boldyrev A, Formazyuk V, Sergienko V (1994) Biological significance of histidine-containing dipeptides with special reference to carnosine: chemistry, distribution, metabolism and medical applications. Sov Sci Rev D Physicochem Biol 13:1–60Google Scholar
  12. Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13(2):64–71CrossRefGoogle Scholar
  13. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9(4):169–176CrossRefGoogle Scholar
  14. Darakhshan S, Pour AB, Colagar AH, Sisakhtnezhad S (2015) Thymoquinone and its therapeutic potentials. Pharmacol Res 95:138–158CrossRefGoogle Scholar
  15. Dhahbi JM, Mote PL, Fahy GM, Spindler SR (2005) Identification of potential caloric restriction mimetics by microarray profiling. Physiol Genomics 23(3):343–350CrossRefGoogle Scholar
  16. Diamanti-Kandarakis E, Dattilo M, Macut D, Duntas L, Gonos ES, Goulis DG, Gantenbein CK, Kapetanou M, Koukkou E, Lambrinoudaki I (2017) MECHANISMS IN ENDOCRINOLOGY: aging and anti-aging: a combo-Endocrinology overview. Eur J Endocrinol 176(6):R283–R308CrossRefGoogle Scholar
  17. Ehninger D, Neff F, Xie K (2014) Longevity, aging and rapamycin. Cell Mol Life Sci 71(22):4325–4346CrossRefGoogle Scholar
  18. Erdoğan ME, Aydın S, Yanar K, Mengi M, Kansu AD, Cebe T, Belce A, Çelikten M, Çakatay U (2017) The effects of lipoic acid on redox status in brain regions and systemic circulation in streptozotocin-induced sporadic Alzheimer’s disease model. Metab Brain Dis 32(4):1017–1031CrossRefGoogle Scholar
  19. Farkhondeh T, Samarghandian S, Hozeifi S, Azimi-Nezhad M (2017) Therapeutic effects of thymoquinone for the treatment of central nervous system tumors: a review. Biomed Pharmacother 96:1440–1444CrossRefGoogle Scholar
  20. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao W-N, Reis SA, Klein PS, Mazitschek R, Maglathlin RL (2010) Effect of inhibiting histone deacetylase with short-chain carboxylic acids and their hydroxamic acid analogs on vertebrate development and neuronal chromatin. ACS Med Chem Lett 2(1):39–42CrossRefGoogle Scholar
  21. Ferguson BS, McKinsey TA (2015) Non-sirtuin histone deacetylases in the control of cardiac aging. J Mol Cell Cardiol 83:14–20CrossRefGoogle Scholar
  22. Fontana M, Pinnen F, Lucente G, Pecci L (2002) Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell Mol Life Sci 59(3):546–551CrossRefGoogle Scholar
  23. Fu A-L, Dong Z-H, Sun M-J (2006) Protective effect of N-acetyl-L-cysteine on amyloid β-peptide-induced learning and memory deficits in mice. Brain Res 1109(1):201–206CrossRefGoogle Scholar
  24. Fu A, Zhou R, Xu X (2014) The synthetic thyroid hormone, levothyroxine, protects cholinergic neurons in the hippocampus of naturally aged mice. Neural Regen Res 9(8):864CrossRefGoogle Scholar
  25. Fusco D, Colloca G, Monaco MRL, Cesari M (2007) Effects of antioxidant supplementation on the aging process. Clin Interv Aging 2(3):377PubMedPubMedCentralGoogle Scholar
  26. Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27(19):2072–2085CrossRefGoogle Scholar
  27. Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflammaging. Prog Neurobiol 127:46–63CrossRefGoogle Scholar
  28. Hipkiss AR (2017) On the relationship between energy metabolism, proteostasis, aging and Parkinson’s disease: possible causative role of methylglyoxal and alleviative potential of carnosine. Aging Dis 8(3):334CrossRefGoogle Scholar
  29. Howes RM (2006) The free radical fantasy. Ann N Y Acad Sci 1067(1):22–26CrossRefGoogle Scholar
  30. Idris-Khodja N, Schini-Kerth V (2012) Thymoquinone improves aging-related endothelial dysfunction in the rat mesenteric artery. Naunyn Schmiedeberg’s Arch Pharmacol 385(7):749–758CrossRefGoogle Scholar
  31. Ingram DK, Roth GS (2011) Glycolytic inhibition as a strategy for developing calorie restriction mimetics. Exp Gerontol 46(2):148–154CrossRefGoogle Scholar
  32. Ito K, Colley T, Mercado N (2012) Geroprotectors as a novel therapeutic strategy for COPD, an accelerating aging disease. Int J Chron Obstruct Pulmon Dis 7:641CrossRefGoogle Scholar
  33. Jonas M, Kuryłowicz A, Puzianowska-Kuźnicka M (2015) Aging and the endocrine system. Postępy Nauk Medycznych 24:166–177Google Scholar
  34. Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15(9):894–903CrossRefGoogle Scholar
  35. Kayali R, Cakatay U, Riza Kiziler A, Aydemir B (2007) Effect of alpha-lipoic acid supplementation on trace element levels in serum and in postmitotic tissue in aged rats. Med Chem 3(3):297–300CrossRefGoogle Scholar
  36. Kenny AM, Prestwood KM, Gruman CA, Marcello KM, Raisz LG (2001) Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels. J Gerontol Ser A Biol Med Sci 56(5):M266–M272CrossRefGoogle Scholar
  37. Khader M, Eckl PM (2014) Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci 17(12):950PubMedPubMedCentralGoogle Scholar
  38. Khavinson VK, Kuznik B, Ryzhak G (2013) Peptide bioregulators: a new class of geroprotectors. Message 1: results of experimental studies. Adv Gerontol 3(3):225–235CrossRefGoogle Scholar
  39. Korkmaz GG, Uzun H, Cakatay U, Aydin S (2012) Melatonin ameliorates oxidative damage in hyperglycemia-induced liver injury. Clin Invest Med 35(6):370–377CrossRefGoogle Scholar
  40. Kornatowski T, Bartosz G, Pawluk H, Czuczejko J, Szadujkis-Szadurski L (2006) Production of nitric oxide, lipid peroxidation and oxidase activity of ceruloplasmin in blood of elderly patients with primary hypertension. Effects of perindopril treatment. Aging Clin Exp Res 18(1):1–6CrossRefGoogle Scholar
  41. Lam YY, Peterson CM, Ravussin E (2013) Resveratrol vs. calorie restriction: data from rodents to humans. Exp Gerontol 48(10):1018–1024CrossRefGoogle Scholar
  42. Loenen WA (2010) S-adenosylmethionine: simple agent of methylation and secret to aging and metabolism? In: Epigenetics of aging. Springer, New York, pp 107–131CrossRefGoogle Scholar
  43. López-Lluch G, Navas P (2016) Calorie restriction as an intervention in ageing. J Physiol 594(8):2043–2060CrossRefGoogle Scholar
  44. Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88(8):756–762CrossRefGoogle Scholar
  45. Ma L, Dong W, Wang R, Li Y, Xu B, Zhang J, Zhao Z, Wang Y (2015) Effect of caloric restriction on the SIRT1/mTOR signaling pathways in senile mice. Brain Res Bull 116:67–72CrossRefGoogle Scholar
  46. Magon N, Chopra S, Kumar P (2012) Geroprotection: a promising future. J Mid-Life Health 3(2):56CrossRefGoogle Scholar
  47. McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212(2):167–175CrossRefGoogle Scholar
  48. Medvedev ZA (1990) An attempt at a rational classification of theories of ageing. Biol Rev 65(3):375–398CrossRefGoogle Scholar
  49. Mohar DS, Malik S (2012) The sirtuin system: the holy grail of resveratrol? J Clin Exp Cardiol 3(11):216CrossRefGoogle Scholar
  50. Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut’ko V, Zhavoronkov A, Kennedy BK (2016) Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 15(3):407–415CrossRefGoogle Scholar
  51. Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M (2017) Geroprotectors: a unified concept and screening approaches. Aging Dis 8(3):354CrossRefGoogle Scholar
  52. Muellenbach EA, Diehl CJ, Teachey MK, Lindborg KA, Archuleta TL, Harrell NB, Andersen G, Somoza V, Hasselwander O, Matuschek M (2008) Interactions of the advanced glycation end product inhibitor pyridoxamine and the antioxidant α-lipoic acid on insulin resistance in the obese Zucker rat. Metab-Clin Exp 57(10):1465–1472CrossRefGoogle Scholar
  53. Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta (BBA)-Bioenerg 1777(7):1028–1031CrossRefGoogle Scholar
  54. Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153(1):6–20CrossRefGoogle Scholar
  55. Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomol Ther 5(1):194–222Google Scholar
  56. Odin V, Belikova T, Pushkova E, Barr N (2004) Diabetes mellitus in elderly: geroprotective and antidiabetic properties of delta-sleep induced peptide. Adv Gerontol= Uspekhi Gerontologii 15:101–114PubMedGoogle Scholar
  57. Oliver G, Dean O, Camfield D, Blair-West S, Ng C, Berk M, Sarris J (2015) N-acetyl cysteine in the treatment of obsessive compulsive and related disorders: a systematic review. Clin Psychopharm Neurosci 13(1):12CrossRefGoogle Scholar
  58. Onorato JM, Jenkins AJ, Thorpe SR, Baynes JW (2000) Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions mechanism of action of pyridoxamine. J Biol Chem 275(28):21177–21184CrossRefGoogle Scholar
  59. Packer L, Witt EH, Tritschler HJ (1995) Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19(2):227–250CrossRefGoogle Scholar
  60. Pandey KB, Rizvi SI (2014) Resveratrol in vitro ameliorates tert-butyl hydroperoxide-induced alterations in erythrocyte membranes from young and older humans. Appl Physiol Nutr Metab 39(10):1093–1097CrossRefGoogle Scholar
  61. Saeidnia S, Abdollahi M (2013) Toxicological and pharmacological concerns on oxidative stress and related diseases. Toxicol Appl Pharmacol 273(3):442–455CrossRefGoogle Scholar
  62. Samaras N, Papadopoulou M-A, Samaras D, Ongaro F (2014) Off-label use of hormones as an antiaging strategy: a review. Clin Interv Aging 9:1175CrossRefGoogle Scholar
  63. Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, Fosbøl EL, Køber L, Norgaard ML, Madsen M (2011) Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J 32(15):1900–1908CrossRefGoogle Scholar
  64. Sinclair DA (2005) Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126(9):987–1002CrossRefGoogle Scholar
  65. Storer TW, Woodhouse L, Magliano L, Singh AB, Dzekov C, Dzekov J, Bhasin S (2008) Changes in muscle mass, muscle strength, and power but not physical function are related to testosterone dose in healthy older men. J Am Geriatr Soc 56(11):1991–1999CrossRefGoogle Scholar
  66. To K, Yamaza H, Komatsu T, Hayashida T, Hayashi H, Toyama H, Chiba T, Higami Y, Shimokawa I (2007) Down-regulation of AMP-activated protein kinase by calorie restriction in rat liver. Exp Gerontol 42(11):1063–1071CrossRefGoogle Scholar
  67. Valenti G (1997) DHEA replacement therapy for human aging: a call for perspective. Aging (Milan, Italy) 9(4 Suppl):71Google Scholar
  68. Valentovic M, Terneus M, Harmon RC, Carpenter AB (2004) S-Adenosylmethionine (SAMe) attenuates acetaminophen hepatotoxicity in C57BL/6 mice. Toxicol Lett 154(3):165–174CrossRefGoogle Scholar
  69. Van Antwerpen P, Legssyer I, Boudjeltia KZ, Babar S, Moreau P, Moguilevsky N, Vanhaeverbeek M, Ducobu J, Nève J (2006) Captopril inhibits the oxidative modification of apolipoprotein B-100 caused by myeloperoxydase in a comparative in vitro assay of angiotensin converting enzyme inhibitors. Eur J Pharmacol 537(1):31–36CrossRefGoogle Scholar
  70. Vistoli G, Orioli M, Pedretti A, Regazzoni L, Canevotti R, Negrisoli G, Carini M, Aldini G (2009) Design, synthesis, and evaluation of carnosine derivatives as selective and efficient sequestering agents of cytotoxic reactive carbonyl species. ChemMedChem 4(6):967–975CrossRefGoogle Scholar
  71. Wang M, Zhang J, Walker SJ, Dworakowski R, Lakatta EG, Shah AM (2010) Involvement of NADPH oxidase in age-associated cardiac remodeling. J Mol Cell Cardiol 48(4):765–772CrossRefGoogle Scholar
  72. Woo CC, Kumar AP, Sethi G, Tan KHB (2012) Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83(4):443–451CrossRefGoogle Scholar
  73. Yanar K, Atukeren P, Cebe T, Kunbaz A, Ozan T, Kansu AD, Durmaz S, Güleç V, Belce A, Aydın S (2015) Ameliorative effects of testosterone administration on renal redox homeostasis in naturally aged rats. Rejuvenation Res 18(4):299–312CrossRefGoogle Scholar
  74. Zhao K, Luo G, Zhao G-M, Schiller PW, Szeto HH (2003) Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther 304(1):425–432CrossRefGoogle Scholar
  75. Zhao K, Zhao G-M, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Karolin Yanar
    • 1
  1. 1.Department of Medical Biochemistry, Cerrahpaşa Faculty of MedicineUniversity of IstanbulIstanbulTurkey

Personalised recommendations