Melatonin and Its Antiaging Activity: New Approaches and Strategies for Age-Related Disorders

  • Sibel SuzenEmail author


Melatonin (N-acetyl-5-methoxy tryptamine, MLT) is a hormone that is produced by the pineal gland. It is synthesized regularly with high levels at night. Age-related decline in MLT contributes to an increased susceptibility to a number of pathophysiological disorders like neurodegenerative diseases, cancer, and aging. There are strong evidences that both Alzheimer’s disease and Parkinson’s disease are associated with low levels of MLT. Because of its wide-ranging antioxidant and radical scavenger effects, MLT may act as a protective agent against many age-related illnesses. MLT’s protection may be possible for both protein and fat tissues in the body by crossing all cell membrane. Currently available data make us to determine that MLT is beneficial for the aging process. Administration of MLT is able to increase the life span of several animals including some rodents. Although, to preserve health in old age becomes a primary goal for biomedicine, there is a necessity for extensive studies on the administration of MLT in order to increase the quality of life in advanced age. In this chapter experimental approaches to antiaging activity of MLT as well as its possible therapeutic significance are reviewed and discussed.


Antiaging Antioxidant Free radical Melatonin Oxidative stress 



Alzheimer’s disease


Caloric restriction




Huntington disease










Mitochondrial DNA




Oxidative stress


Fatty acid


Reactive oxygen species




  1. Anisimov VN, Alimovaa IN, Baturina DA et al (2003) Dose-dependent effect of melatonin on life span and spontaneous tumor incidence in female SHR mice. Exp Gerontol 38:449–461PubMedCrossRefGoogle Scholar
  2. Anisimov VN, Popovich IG, Zabezhinski MA et al (2006) Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 1757:573–589PubMedCrossRefGoogle Scholar
  3. Barja G (2004) Free radicals and aging. Trends Neurosci 27:595–600PubMedCrossRefGoogle Scholar
  4. Bekris LM, Yu C-E, Bird TD et al (2010) Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23:213–227PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bergamini E, Cavallini G, Donati A et al (2004) The role of macroautophagy in the ageing process, anti-ageing intervention and age-associated diseases. Int J Biochem Cell Biol 36:2392–2404PubMedCrossRefGoogle Scholar
  6. Berneburg M, Grether-Beck S, Kürten V et al (1999) Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J Biolumin Chemilumin 274:15345–15349Google Scholar
  7. Blander G, Guarente L (2004) The Sirt2 family of protein deacetylases. Annu Rev Biochem 73:417–435PubMedCrossRefGoogle Scholar
  8. Bonilla E, Medina-Leendertz S, Diaz S (2002) Extension of life span and stress resistance of Drosophila melanogaster by long-term supplementation with melatonin. Exp Gerontol 37:69–638CrossRefGoogle Scholar
  9. Bonnefont-Rousselot D, Collin F (2010) Melatonin: action as antioxidant and potential applications in human disease and aging. Toxicology 278:55–67PubMedCrossRefGoogle Scholar
  10. Bonomini F, Rodella LF, Rezzani R (2015) Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis 6:109–120PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cakatay U, Telci A, Kayalì R et al (2001) Relation of oxidative protein damage and nitrotyrosine levels in the aging rat brain. Exp Gerontol 36:221–229PubMedCrossRefGoogle Scholar
  12. Cardinali DP, Furio AM, Brusco LI (2010) Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol 8:218–227PubMedPubMedCentralCrossRefGoogle Scholar
  13. Carrillo-Vico A, Calvo JR, Abreu P et al (2004) Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J 18:537–539PubMedCrossRefGoogle Scholar
  14. Carrillo-Vico A, Guerrero JM, Lardone PJ et al (2005) A review of the multiple actions of melatonin on the immune system. Endocrine 27:189–200PubMedCrossRefGoogle Scholar
  15. Cavallini G, Donati A, Gori Z et al (2008) Towards an understanding of the anti-aging mechanism of caloric restriction. Curr Aging Sci 1:4–9PubMedCrossRefGoogle Scholar
  16. Ceraulo L, Ferrugia M, Tesoriere L et al (1999) Interactions of melatonin with membrane models: portioning of melatonin in AOT and lecithin reversed micelles. J Pineal Res 26:108–112PubMedCrossRefGoogle Scholar
  17. Chahbouni M, Escames G, Venegas C et al (2010) Melatonin treatment normalizes plasma pro-inflammatory cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. J Pineal Res 48:282–289PubMedCrossRefGoogle Scholar
  18. Chakravarty S, Rizvi SI (2011) Day and night GSH and MDA levels in healthy adults and effects of different doses of melatonin on these parameters. Int J Cell Biol 2011:404591–404595PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30:271–281PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen Z, Chua CC, Gao J et al (2003) Protective effect of melatonin on myocardial infarction. Am J Physiol Heart Circ Physiol 284:H1618–H1624PubMedCrossRefGoogle Scholar
  21. Chen Y, Qing W, Sun M et al (2015) Melatonin protects hepatocytes against bile acid-induced mitochondrial oxidative stress via the AMPK-SIRT3-SOD2 pathway. Free Radic Res 49:1–32CrossRefGoogle Scholar
  22. Cheng Y, Cai L, Jiang P et al (2013) SIRT1 inhibition by melatonin exerts antitumor activity in human osteosarcoma cells. Eur J Pharmacol 715:219–229PubMedCrossRefGoogle Scholar
  23. Chomyn A, Attardi G (2003) MtDNA mutations in aging and apoptosis. Biochem Biophys Res Commun 304:519–529PubMedCrossRefGoogle Scholar
  24. Cohen-Mansfield J, Garfinkel D, Lipson S (2000) Melatonin for treatment of sundowning in elderly persons with dementia—a preliminary study. Arch Gerontol Geriatr 31:65–76PubMedCrossRefGoogle Scholar
  25. Cruz MH, Leal CL, Cruz JF et al (2014) Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology 82:925–932PubMedCrossRefGoogle Scholar
  26. Delgado J, Terrón MP, Garrido M et al (2012) Jerte Valley cherry-based product modulates serum inflammatory markers in rats and ringdoves. J Appl Biomed 10:41–50CrossRefGoogle Scholar
  27. Dreher F, Gabard B, Schwindt DA et al (1998) Topical melatonin in combination with vitamins E and C protects skin from ultraviolet-induced erythema: a human study in vivo. Br J Dermatol 139:332–339PubMedCrossRefGoogle Scholar
  28. Espino J, Pariente JA, Rodríguez AB (2012) Oxidative stress and immunosenescence: therapeutic effects of melatonin. Oxid Med Cell Long 2012:670294–670299Google Scholar
  29. Esquifino AI, Pandi-Perumal SR, Cardinali DP (2004) Circadian organization of the immune response: a role for melatonin. Clin Appl Immunol Rev 4:423–433CrossRefGoogle Scholar
  30. Eşrefoğlu M, Seyhan M, Gül M et al (2005) Potent therapeutic effect of melatonin on aging skin in pinealectomized rats. J Pineal Res 39:231–237PubMedCrossRefGoogle Scholar
  31. Eşrefoğlu M, Gül M, Seyhan M et al (2006) Ultrastructural clues for the potent therapeutic effect of melatonin on aging skin in pinealectomized rats. Fundam Clin Pharmacol 20:605–611PubMedCrossRefGoogle Scholar
  32. Fischer TW, Scholz G, Knöll B et al (2002) Melatonin suppresses reactive oxygen species in UV-irradiated leukocytes more than vitamin C and trolox. Skin Pharmacol Appl Ski Physiol 15:367–373CrossRefGoogle Scholar
  33. Fischer TW, Sweatman TW, Semak I et al (2006) Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J 20:1564–1566PubMedCrossRefGoogle Scholar
  34. Fischer TW, Slominski A, Zmijewski MA et al (2008) Melatonin as a major skin protectant: from free radical scavenging to DNA damage repair. Exp Dermatol 17:713–730PubMedCrossRefGoogle Scholar
  35. Galano A (2016) Computational-aided design of melatonin analogues with outstanding multifunctional antioxidant capacity. RSC Adv 6:22951–22963CrossRefGoogle Scholar
  36. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257PubMedCrossRefGoogle Scholar
  37. Galano A, Tan DX, Reiter RJ (2017) Melatonin and related compounds: chemical insights into their protective effects against oxidative stress. Curr Org Chem 21:2077–2095CrossRefGoogle Scholar
  38. Gitto E, Reiter RJ, Amodio A et al (2004) Early indicators of chronic lung disease in preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res 36:250–255PubMedCrossRefGoogle Scholar
  39. Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harbor Symp Quant Biol 72:483–488PubMedCrossRefGoogle Scholar
  40. Guo XH, Li YH, Zhao YS et al (2017) Anti-aging effects of melatonin on the myocardial mitochondria of rats and associated mechanisms. Mol Med Rep 15:403–410PubMedCrossRefGoogle Scholar
  41. Gurer-Orhan H, Ince E, Konyar D et al (2017) The role of oxidative stress modulators in breast cancer. Curr Med Chem (in print)Google Scholar
  42. Gurer-Orhan H, Suzen S (2015) Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr Med Chem 22:490–499PubMedCrossRefGoogle Scholar
  43. Gurer-Orhan H, Karaaslan C, Ozcan S et al (2016) Novel indole-based melatonin analogues: evaluation of antioxidant activity and protective effect against amyloid β-induced damage. Bioorg Med Chem 24:1658–1664PubMedCrossRefGoogle Scholar
  44. Gurkok G, Coban T, Suzen S (2009) Melatonin analogue new indole hydrazide/hydrazone derivatives with antioxidant behavior: synthesis and structure-activity relationships. J Enzyme Inhib Med Chem 24:506–515PubMedCrossRefGoogle Scholar
  45. Hardeland R (2010) Melatonin metabolism in the central nervous system. Curr Neuropharmacol 8:168–181PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hardeland R (2012) Melatonin in aging and disease-multiple consequences of reduced secretion, options and limits of treatment. Aging and Disease 3:194–225PubMedGoogle Scholar
  47. Hardeland R, Reiter RJ, Poeggeler B et al (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci Biobehav Rev 17:347–357PubMedCrossRefGoogle Scholar
  48. Hardeland R, Tan DX, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res 47:109–126PubMedCrossRefGoogle Scholar
  49. Head E, Liu J, Hagen TM et al (2002) Oxidative damage increases with age in a canine model of human brain aging. J Neurochem 82:375–381PubMedCrossRefGoogle Scholar
  50. Heutling D, Lehnert H (2008) Hormone therapy and anti-aging: is there an indication? Internist 49:570–579PubMedCrossRefGoogle Scholar
  51. Hwang O (2013) Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 22:11–17PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jahnke G, Marr M, Myers C et al (1999) Maternal and developmental toxicity evaluation of melatonin administered orally to pregnant Sprague-Dawley rats. Toxicol Sci 50:271–279PubMedCrossRefGoogle Scholar
  53. Jansen-Dürr P, Osiewacz HD (2002) Healthy ageing: a question of stress, damage and repair. Meeting on mechanisms of biological ageing. EMBO Rep 3:1127–1132PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jin S (2006) Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2:80–84PubMedCrossRefGoogle Scholar
  55. Johns JR, Platts JA (2014) Theoretical insight into the antioxidant properties of melatonin and derivatives. Org Biomol Chem 12(39):7820–7827PubMedCrossRefGoogle Scholar
  56. Jung-Hynes B, Ahmad N (2009) SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J 23:2803–2809PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jung-Hynes B, Huang W, Reiter RJ et al (2010) Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res 49:60–68PubMedPubMedCentralGoogle Scholar
  58. Jung-Hynes B, Schmit TL, Reagan-Shaw SR et al (2011) Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J Pineal Res 50:140–149PubMedGoogle Scholar
  59. Kaewsuk S, Sae-ung K, Phansuwan-Pujito P et al (2009) Melatonin attenuates methamphetamine-induced reduction of tyrosine hydroxylase, synaptophysin and growth-associated protein-43 levels in the neonatal rat brain. Neurochem Int 55:397–405PubMedCrossRefGoogle Scholar
  60. Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15:894–903PubMedCrossRefGoogle Scholar
  61. Karasek M (2004) Melatonin, human aging, and age-related diseases. Exp Gerontol 39:1723–1729PubMedCrossRefGoogle Scholar
  62. Karasek M, Reiter RJ (2002) Melatonin and aging. Neuro Endocrinol Lett 23:14–16PubMedGoogle Scholar
  63. Kireev RA, Vara E, Tresguerres JAF (2013) Growth hormone and melatonin prevent age-related alteration in apoptosis processes in the dentate gyrus of male rats. Biogerontology 14:431–442PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kireev RA, Vara E, Viña J et al (2014) Melatonin and oestrogen treatments were able to improve neuroinflammation and apoptotic processes in dentate gyrus of old ovariectomized female rats. Age (Dordr) 36:9707–9715CrossRefGoogle Scholar
  65. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447PubMedCrossRefGoogle Scholar
  66. Kleszczynski K, Fischer TW (2012) Melatonin and human skin aging. Dermatoendocrinology 4:245–252CrossRefGoogle Scholar
  67. Kriete A, Lechner M, Clearfield D et al (2011) Computational systems biology of aging. Wiley Interdiscip Rev Syst Biol Med 3:414–428PubMedCrossRefGoogle Scholar
  68. Lee KS, Lee WS, Suh SI et al (2003) Melatonin reduces ultraviolet-B induced cell damages and polyamine levels in human skin fibroblasts in culture. Exp Mol Med 35:263–268PubMedCrossRefGoogle Scholar
  69. Longo VD, Mitteldorf J, Skulachev VP (2005) Programmed and altruistic ageing. Nat Rev Genet 6:866–872PubMedCrossRefGoogle Scholar
  70. Manda K, Bhatia AL (2003) Melatonin-induced reduction in age-related accumulation of oxidative damage in mice. Biogerontology 4:133–139PubMedCrossRefGoogle Scholar
  71. Martín V, Sainz RM, Antolín I et al (2002) Several antioxidant pathways are involved in astrocyte protection by melatonin. J Pineal Res 33:204–212PubMedCrossRefGoogle Scholar
  72. Mayo JC, Sainz RM, González Menéndez P et al (2017) Melatonin and sirtuins: a “not-so unexpected” relationship. J Pineal Res 62:e12391 in printCrossRefGoogle Scholar
  73. McMullan CJ, Schernhammer ES, Rimm EB et al (2013) Melatonin secretion and the incidence of type 2 diabetes. JAMA 309:1388–1396PubMedPubMedCentralCrossRefGoogle Scholar
  74. Molpeceres V, Mauriz JL, García-Mediavilla MV et al (2007) Melatonin is able to reduce the apoptotic liver changes induced by aging via inhibition of the intrinsic pathway of apoptosis. J Gerontol A Biol Sci Med Sci 62:687–695PubMedCrossRefGoogle Scholar
  75. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13CrossRefGoogle Scholar
  76. Nelson RJ (2004) Seasonal immune function and sickness responses. Trends Immunol 25:187–192PubMedCrossRefGoogle Scholar
  77. Nicolle MM, Gonzalez J, Sugaya K et al (2001) Signatures of hippocampal oxidative stress in aged spatial learning-impaired rodents. Neuroscience 107:415–431PubMedCrossRefGoogle Scholar
  78. Ochoa JJ, Vilchez MJ, Palacios MA et al (2003) Melatonin protects against lipid peroxidation and membrane rigidity in erythrocytes from patients undergoing cardiopulmonary bypass surgery. J Pineal Res 35:104–108PubMedCrossRefGoogle Scholar
  79. Oxenkrug G, Requintina P, Bachurin S (2001) Antioxidant and antiaging activity of N-acetylserotonin and melatonin in the in vivo models. Ann N Y Acad Sci 939:190–199PubMedCrossRefGoogle Scholar
  80. Papaioannou N, Tooten PC, van Ederen AM et al (2001) Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid 8:11–21PubMedCrossRefGoogle Scholar
  81. Pappolla MA, Omar RA, Kim KS et al (1992) Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am J Pathol 140:621–628PubMedPubMedCentralGoogle Scholar
  82. Pappolla MA, Chyan YJ, Poeggeler B et al (1999) Alzheimer beta protein mediated oxidative damage of mitochondrial DNA: prevention by melatonin. J Pineal Res 27:226–229PubMedCrossRefGoogle Scholar
  83. Paradies G, Petrosillo G, Paradies V et al (2010) Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 48:297–310PubMedCrossRefGoogle Scholar
  84. Pawlikowski M, Winczyk K, Karasek M (2002) Oncostatic action of melatonin: facts and question marks. Neuro Endocrinol Lett 23:S24–S29Google Scholar
  85. Poeggeler B (2005) Melatonin, aging, and age-related diseases. Perspectives for prevention, intervention, and therapy. Endocrine 27:201–212PubMedCrossRefGoogle Scholar
  86. Powers ET, Morimoto RI, Dillin A et al (2009) Biological and chemical approaches 946 to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991PubMedCrossRefGoogle Scholar
  87. Ramis MR, Esteban S, Miralles A et al (2015) Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases. Mech Ageing Dev 146:28–41PubMedCrossRefGoogle Scholar
  88. Reiter RJ, Tan DX (2003) What constitutes a physiological concentration of melatonin? J Pineal Res 34:79–80PubMedCrossRefGoogle Scholar
  89. Reiter RJ, Tan DX, Osuna C et al (2000) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Res 7:444–458Google Scholar
  90. Reiter RJ, Tan DX, Mayo JC et al (2002) Melatonin, longevity and health in the aged: an assessment. Free Radic Res 36:1323–1329PubMedCrossRefGoogle Scholar
  91. Reiter RJ, Tan DX, Mayo JC et al (2003) Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol 50:1129–1146PubMedGoogle Scholar
  92. Reiter RJ, Tan DX, Maldonado MD (2005) Melatonin as an antioxidant: physiology versus pharmacology. J Pineal Res 39:215–216PubMedCrossRefGoogle Scholar
  93. Reiter RJ, Tan DX, Fuentes-Broto L (2010a) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151PubMedCrossRefGoogle Scholar
  94. Reiter RJ, Tan DX, Paredes SD et al (2010b) Beneficial effects of melatonin in cardiovascular disease. Ann Med 42:276–285PubMedCrossRefGoogle Scholar
  95. Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology (Bethesda) 29:325–333Google Scholar
  96. Reiter RJ, Tan DX, Zhou Z et al (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437PubMedCrossRefGoogle Scholar
  97. Reiter RJ, Mayo JC, Tan DX et al (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278PubMedCrossRefGoogle Scholar
  98. Reiter RJ, Rosales-Corral SA, Tan DX et al (2017) Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int J Mol Sci:18 (in print)Google Scholar
  99. Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol 27:647–653PubMedCrossRefGoogle Scholar
  100. Rizvi SI, Jha R (2011) Strategies for the discovery of anti-aging compounds. Expert Opin Drug Discov 6:89–102PubMedCrossRefGoogle Scholar
  101. Rodella LF, Favero G, Rossini C et al (2013) Aging and vascular dysfunction: beneficial melatonin effects. Age (Dordr) 35:103–115CrossRefGoogle Scholar
  102. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556PubMedPubMedCentralCrossRefGoogle Scholar
  103. Rodriquez C, Mayo JC, Sainz RM et al (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9CrossRefGoogle Scholar
  104. Rosales-Corral SA, Acuña-Castroviejo D, Coto-Montes A et al (2012) Alzheimer’s disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res 52:167–202PubMedCrossRefGoogle Scholar
  105. Rúzsás C, Mess B (2000) Melatonin and aging. A brief survey. Neuro Endocrinol Lett 21:17–23PubMedGoogle Scholar
  106. Sartori C, Dessen P, Mathieu C et al (2009) Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology 150:5311–5317PubMedCrossRefGoogle Scholar
  107. Savaskan E, Ayoub MA, Ravid R et al (2005) Reduced hippocampal MT2 melatonin receptor expression in Alzheimer’s disease. J Pineal Res 38:10–16PubMedCrossRefGoogle Scholar
  108. Shirinzadeh H, Ince E, Westwell AD et al (2016) Novel indole-based melatonin analogues substituted with triazole, thiadiazole and carbothioamides: studies on their antioxidant, chemopreventive and cytotoxic activities. J Enzyme Inhib Med Chem 31:1312–1321PubMedCrossRefGoogle Scholar
  109. Shukla M, Govitrapong P, Boontem P et al (2017) Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 15:1010–1031PubMedPubMedCentralCrossRefGoogle Scholar
  110. Slominski A, Wortsman J, Tobin DJ (2005) The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J 19:176–194PubMedCrossRefGoogle Scholar
  111. Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63PubMedPubMedCentralCrossRefGoogle Scholar
  112. Srinivasan V, Maestroni G, Cardinali D (2005) Melatonin, immune function and aging. Immun Ageing 2:17–27PubMedPubMedCentralCrossRefGoogle Scholar
  113. Srinivasan V, Spence DW, Pandi-Perumal SR et al (2008) Therapeutic actions of melatonin in cancer: possible mechanisms. Integr Cancer Ther 7:189–203PubMedCrossRefGoogle Scholar
  114. Suzen S (2007) Antioxidant activities of synthetic indole derivatives and possible activity mechanisms. In: Khan MTH (ed) Topics in heterocyclic chemistry, bioactive heterocycles, vol 11. V Spinger-Verlag, Berlin/Heidelberg, pp 145–178Google Scholar
  115. Suzen S (2013) Melatonin and synthetic analogs as antioxidants. Curr Drug Delivery 10:71–75CrossRefGoogle Scholar
  116. Suzen S (2015) Evaluation of synthetic melatonin analogue antioxidant compounds. In: Srinivasan V, Gobbi G, Shillcutt SD, Suzen S (eds) Melatonin: therapeutic value and neuroprotection (Chapter 21). Taylor & Francis, Boca Raton, pp 259–269Google Scholar
  117. Suzen S, Bozkaya P, Coban T et al (2006) Investigation of the in vitro antioxidant behaviour of some 2-phenylindole derivatives: discussion on possible antioxidant mechanisms and comparison with melatonin. J Enzyme Inhib Med Chem 21:405–411PubMedCrossRefGoogle Scholar
  118. Tajes M, Gutierrez-Cuesta J, Ortuño-Sahagun D et al (2009) Anti-aging properties of melatonin in an in vitro murine senescence model: involvement of the sirtuin 1 pathway. J Pineal Res 47:228–237PubMedCrossRefGoogle Scholar
  119. Tamura H, Takasaki A, Taketani T et al (2014) Melatonin and female reproduction. J Obstet Gynaecol Res 40:1–11PubMedCrossRefGoogle Scholar
  120. Tamura H, Kawamoto M, Sato S et al (2017) Long-term melatonin treatment delays ovarian aging. J Pineal Res 62:e12381–e12314CrossRefGoogle Scholar
  121. Tan DX, Chen LD, Poeggeler B et al (1993) Melatonin a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60Google Scholar
  122. Tan DX, Manchester LC, Reiter RJ et al (2000) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9:137–159PubMedCrossRefGoogle Scholar
  123. Tan DX, Manchester LC, Burkhardt S (2001) N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J 15:2294–2296PubMedCrossRefGoogle Scholar
  124. Tan DX, Reiter RJ, Manchester LC (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad-spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2:181–198PubMedCrossRefGoogle Scholar
  125. Tan DX, Manchester LC, Terron MP et al (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42PubMedCrossRefGoogle Scholar
  126. Tan DX, Manchester LC, Esteban-Zubero E et al (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20:18886–18906PubMedCrossRefGoogle Scholar
  127. Tekiner-Gulbas B, Westwell AD, Suzen S (2013) Oxidative stress in carcinogenesis: new synthetic compounds with dual effects upon free radicals and cancer. Curr Med Chem 20:4451–4459PubMedCrossRefGoogle Scholar
  128. Tresguerres IF, Tamimi F, Eimar H et al (2014) Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res 17:341–346PubMedCrossRefGoogle Scholar
  129. Vijayalaxmi T Jr, Reiter RJ, Herman TS (2002) Melatonin: from basic research to cancer treatment clinics. J Clin Oncol 20:2575–2601PubMedCrossRefGoogle Scholar
  130. Vinogradova IA, Shevchenko AI et al (2005) Effect of light regimen on indices of biological age and age-related pathology. Med Acad J 5:18–20Google Scholar
  131. Vriend J, Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 58:1–11PubMedCrossRefGoogle Scholar
  132. Waddell BJ, Wharfe MD, Crew RC et al (2012) Mark PJ. A rhythmic placenta? Circadian variation, clock genes and placental function. Placenta 33:533–539PubMedCrossRefGoogle Scholar
  133. Wang YM, Jin BZ, Ai F et al (2012) The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemother Pharmacol 69:1213–1220PubMedCrossRefGoogle Scholar
  134. Wu YU, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152PubMedCrossRefGoogle Scholar
  135. Yi C, Pan X, Yan H et al (2005) Effects of melatonin in age-related maculardegeneration. Ann N Y Acad Sci 1057:384–392PubMedCrossRefGoogle Scholar
  136. Yilmaz AD, Coban T, Suzen S (2012) Synthesis and antioxidant activity evaluations of melatonin-based analogue indole-hydrazide/hydrazone derivatives. J Enzyme Inhib Med Chem 27:428–436PubMedCrossRefGoogle Scholar
  137. Yoneda M, Katsumata K, Hayakawa M et al (1995) Oxygen stress induces an apoptotic cell death associated with fragmentation of mitochondrial genome. Biochem Biophys Res Commun 209:723–729PubMedCrossRefGoogle Scholar
  138. Yoo DY, Kim W, Lee CH et al (2012) Melatonin improves D-galactose-induced aging effects on behavior, neurogenesis, and lipid peroxidation in the mouse dentate gyrus via increasing pCREB expression. J Pineal Res 52:21–28PubMedCrossRefGoogle Scholar
  139. Zarkovic K (2003) 4-hydroxynonenal and neurodegenerative diseases. Mol Asp Med 24:293–303CrossRefGoogle Scholar
  140. Zhang YC, Wang ZF, Wang Q et al (2004) Melatonin attenuates beta-amyloid-induced inhibition of neurofilament expression. Acta Pharmacol Sin 25:447–451PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyAnkara UniversityAnkaraTurkey

Personalised recommendations