Non-learning-Based Motion Cognitive Detection and Self-adaptable Tracking for Night-Vision Videos

  • Lianfa BaiEmail author
  • Jing Han
  • Jiang Yue


Motion detection and tracking technology is one of the core subjects in the field of computer vision. It is significant and has wide practical value in night-vision research. Traditional learning-based detection and tracking algorithms require many samples and a complex model, which is difficult to implement. The robustness of detection and tracking in complex scenes is weak. This chapter introduces a series of infrared small-target detection, non-learning motion detection and tracking methods based on imaging spatial structure, which are robust to complex scenes.


  1. Achanta, R., Shaji, A., Smith, K., et al. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274.CrossRefGoogle Scholar
  2. Bae, T. W., Zhang, F., & Kweon, I. S. (2012). Edge directional 2D LMS filter for infrared small target detection. Infrared Physics & Technology, 55(1), 137–145.CrossRefGoogle Scholar
  3. Chong, X. G. (2014). Research on online video target tracking algorithm based on target scaling and blocking. Chongqing University.Google Scholar
  4. Chun, B. X., & Shi, A. W. (2015). Camshift tracking method for significant histogram model. Optics and Precision Engineering, 6, 1749–1757.Google Scholar
  5. Devernay, F. (1995). A non-maxima suppression method for edge detection with subpixel accuracy. Technical Report RR-2724, Institut National de Recherche en Informatique et en Automatique.Google Scholar
  6. Drummond, O. E. (1993). Morphology-based algorithm for point target detection in infrared backgrounds. Proceedings of SPIE-The International Society for Optical Engineering, 1954, 2–11.Google Scholar
  7. Gu, Y., Wang, C., Liu, B. X., et al. (2010). A kernel-based nonparametric regression method for clutter removal in infrared small-target detection applications. IEEE Geoscience and Remote Sensing Letters, 7(3), 469–473.CrossRefGoogle Scholar
  8. Guo, M. C. (2016). Research on target tracking algorithm for context information and color information fusion. Zhejiang Normal University.Google Scholar
  9. Hong, Z. Z., Jin, H. Z., Hui, Y., & Shi, L. H. (2006). Target tracking algorithm based on CamShift. Computer Engineering and Design, 27(11), 2012–2014.Google Scholar
  10. Kai, H. Z. (2012). Real-time compressive tracking. Computer Vision–ECCV, 30(7), 864–877.Google Scholar
  11. Karacan, L., Erdem, E., & Erdem, A. (2013). Structure-preserving image smoothing via region covariances. ACM Transactions on Graphics, 32(6), 1–11.CrossRefGoogle Scholar
  12. Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37–68.CrossRefGoogle Scholar
  13. Lachiche, N., & Flach, P. (2003) Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves (pp. 416–423). ICML.Google Scholar
  14. Leibe, B., Leonardis, A., & Schiele, B. (2008). Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 77, 259–289.CrossRefGoogle Scholar
  15. Li, L., Li, H., Li, T., et al. (2014). Infrared small target detection in compressive domain. Electronics Letters, 50(7), 510–512.MathSciNetCrossRefGoogle Scholar
  16. Liu, T., Yuan, Z., Sun, J., et al. (2010). Learning to detect a salient object. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 353–367.Google Scholar
  17. Luo, F., Han, J., Qi, W., et al. (2015). Robust object detection based on local similar structure statistical matching. Infrared Physics & Technology, 68, 75–83.CrossRefGoogle Scholar
  18. Meng, R. L. (2015). Research on infrared target tracking algorithm based on mean shift. Shenyang University of Technology.Google Scholar
  19. Milanfar, P. (2009). Adaptive regression kernels for image/video restoration and recognition. Computational Optical Sensing and Imaging.Google Scholar
  20. Ming, B. W. (2016). A survey of moving target tracking methods. Computer and Digital Engineering, 11, 2164–2167, 2208.Google Scholar
  21. Muesera, P. R., Cowanb, N., & Kim, T. (1999). A generalised signal detection model to predict rational variation in base rate use. Cognition, 69(3), 267–312.CrossRefGoogle Scholar
  22. Ran, W. (2012). Research on improved algorithm of motion prediction target tracking based on camshift algorithm. Shandong University.Google Scholar
  23. Rodieck, R. W., & Stone, J. (1965). Analysis of receptive fields of cat retinal ganglion cells. Journal of Neurophysiology, 28(5), 833–849.CrossRefGoogle Scholar
  24. Rong, T. C., Yuan, H. W., Ming, J. W., & Qin, X. W. (2010) A survey of video target tracking algorithms. Television Technology, 12, 135–138, 142.Google Scholar
  25. Sanchez, J. S., Mollineda, R. A., & Sotoca, J. M. (2007). An analysis of how training data complexity affects the nearest neighbour classifiers. Pattern Analysis and Applications, 10(3), 189–201.MathSciNetCrossRefGoogle Scholar
  26. Seo, H. J., & Milanfar, P. (2009a). Training-free generic object detection using locally adaptive regression kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1688–1704.Google Scholar
  27. Seo, H. J., & Milanfar, P. (2009b). Detection of human actions from a single example. In 2009 IEEE 12th International Conference on Computer Vision (pp. 1965–1970). IEEE.Google Scholar
  28. Seo, H. J., & Milanfar, P. (2011a). Face verification using the lark representation. IEEE Transactions on Information Forensics and Security, 6(4), 1275–1286.CrossRefGoogle Scholar
  29. Seo, H. J., & Milanfar, P. (2011b). Action recognition from one example. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 867–882.CrossRefGoogle Scholar
  30. Seo, H. J., & Milanfar, P. (2011c). Robust visual recognition with locally adaptive regression kernels. A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering.Google Scholar
  31. Shen, Y., & Fan, J. (2010). Multi-task multi-label multiple instance learning. Journal of Zhejiang University-Science C (Computers &Electronics), 11, 860–871.Google Scholar
  32. Takeda, H., Farsiu, S., & Milanfar, P. (2007). Kernel regression for image processing and reconstruction. IEEE Transactions on Image Process, 16(2), 349–366.MathSciNetCrossRefGoogle Scholar
  33. Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Conference on Computer Vision and Pattern Recognition.Google Scholar
  34. Wang, Y. (2012). Adaboost face detection algorithm based on locally adaptive kernels regression. Nanjing University of Aeronautics and Astronautics.Google Scholar
  35. Wang, X., Ning, C., & Xu, L. (2015). Saliency detection using mutual consistency-guided spatial cues combination. Infrared Physics & Technology, 72, 106–116.CrossRefGoogle Scholar
  36. Xing, F. G., Yao, B. M., & Qiu, J. L. (2012). Summarization of visual target tracking algorithm based on mean shift. Computer Science, 12, 16–24.Google Scholar
  37. Yang, L., Yang, J., & Yang, K. (2004). Adaptive detection for infrared small target under sea-sky complex background. Electronics Letters, 40(17), 1083–1085.CrossRefGoogle Scholar
  38. Zhang, J., Fang, J., & Lu, J. (2011). Mean-Shift algorithm integrating with SURF for tracking. In Seventh International Conference on Natural Computation (pp. 960–963). IEEE.Google Scholar
  39. Zhang, B., Tian, W., & Jin, Z. (2006). Joint tracking algorithm using particle filter and mean shift with target model updating. Chinese Optics Letters, 4(10), 569–572.Google Scholar
  40. Zhang, K., Zhang, L., Yang, M. H., et al. (2013). Fast tracking via spatio-temporal context learning. Computer Science.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  3. 3.National Key Laboratory of Transient PhysicsNanjing University of Science and TechnologyNanjingChina

Personalised recommendations