Constraining the Chronology of the Mashishing Dykes from the Eastern Kaapvaal Craton in South Africa

  • H. WaboEmail author
  • F. Humbert
  • M. O. de Kock
  • G. Belyanin
  • U. Söderlund
  • L. P. Maré
  • N. J. Beukes
Part of the Springer Geology book series (SPRINGERGEOL)


The present study focuses on NNE-trending dykes (sites LDA to LDJ) that occur near Mashishing in the eastern Kaapvaal craton. The Mashishing dykes were previously considered to be coeval and regarded as the extension of the 1.875–1.835 Ga Black Hills dyke swarm into the sedimentary rocks of the Pretoria Group. Thin sections exhibit well-preserved igneous textures, with primary minerals (e.g., hornblende, clinopyroxene, plagioclase) extensively altered to secondary minerals in most cases. Our dykes can be petrographically grouped as pyroxenite (LDB and LDC), dolerite (LDH) and diorite (remainder of samples). REE and multi-element profiles of pyroxenites and two of the diorites (LDI and LDJ) suggest a common origin of the four dykes, but show no similarity with known mafic units of the Kaapvaal craton. An age estimate between 2208 and 2276 Ma for dyke LDB, obtained from two overlapping amphibole 40Ar/39Ar plateau results, indicates that these four dykes predates the ~2.05 Ga Bushveld event. The six remaining dykes have similar chemistry to either the ~2.06 Ga Dullstroom Lavas (LDG), the 1.875–1.835 Ga Black Hills dyke swarm (LDH) or the ~1.11 Ga Umkondo dolerites (LDA, LDD, LDE and LDF). An U–Pb baddeleyite date of 1867 ± 10 Ma for dyke LDH confirms it as a member of the Black Hills dyke swarm. Demagnetization of eighty-three specimens reveals five stable magnetizations carried by titanomagnetite. Two of these are regarded as magnetic overprints while three magnetizations are likely representative of primary remanences. The corresponding virtual geomagnetic poles (Lat.−26.84°N, Long. 31.66°E; Lat. 26.07°N, Long. 11.01°E, and Lat. 55.84°N, Long. 65.02°E) resemble those from the ~2.23 Ga Hekpoort Formation, the ~1.88–1.83 Ga post-Waterberg intrusions, and the ~1.11 Ga Umkondo dolerites respectively. The above results suggest that the Mashishing dykes, despite similar trends, constitute swarms of different generations.


Kaapvaal craton NNE-dyke Geochemistry Geochronology Paleomagnetism 



HW received financial support from the South African National Research Foundation (NRF) and also acknowledges research funding from CIMERA as well as the PPM Research Group of the Department of Geology at the University of Johannesburg. HW thanks Prof. J. Kramers for fruitful discussions during the interpretation of 40Ar/39Ar data. The authors thank the handling editor R. Srivastava, and the two reviewers M. Klausen and R. Ernst for their constructive critics and suggestions which improve the manuscript.


  1. Alebouyeh Semami F, De Kock MO, Söderlund U, Gumsley AP, Da Silva R, Beukes NJ, Armstrong R (2016) New U–Pb geochronological and paleomagnetic constraints on the late Paleoproterozoic Hartley magmatic event: evidence for a potential large igneous province in the Kaapvaal Craton during Kalahari assembly, South Africa. GFF 138:164–182CrossRefGoogle Scholar
  2. Barnes SJ, Maier WD, Curl EA (2010) Composition of the marginal rocks and sills of the Rustenburg Layered Suite, Bushveld Complex, South Africa: implications for the formation of the platinum-group element deposits. Econ Geol 105:1491–1511CrossRefGoogle Scholar
  3. Buchanan PC, Koeberl C, Reimold WU (1999) Petrogenesis of the Dullstroom formation, Bushveld magmatic province, South Africa. Contrib Miner Petrol 137:133–146CrossRefGoogle Scholar
  4. Bullen DS, Hall RP, Hanson RE (2012) Geochemistry and petrogenesis of mafic sills in the 1.1 Ga Umkondo Large Igneous province, southern Africa. Lithos 142–143:116–129CrossRefGoogle Scholar
  5. Cawthorn RG, Eales HV, Walraven F, Uken R, Watkeys MK (2006) The Bushveld complex. In: Johnston MR, Anhaeusser CR, Thomas RJ (eds) The Geology of South Africa. Geological Society of South Africa, Johannesburg, Council for Geoscience, Pretoria, pp 261–281Google Scholar
  6. Cornell DH, Armstrong RA, Walraven F (1998) Geochronology of the Proterozoic Hartley formation, South Africa: constraints on the Kheis tectogenesis and the Kaapvaal Craton’s earliest Wilson Cycle. J Afr Earth Sci 26:5–27CrossRefGoogle Scholar
  7. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George Allen and Unwin, London, p 450CrossRefGoogle Scholar
  8. Crow C, Condie KC (1990) Geochemistry and origin of early Proterozoic volcanic rocks from the Transvaal and Soutpansberg successions, South Africa. Precambr Res 47:17–26CrossRefGoogle Scholar
  9. Deer WA, Howie RA, Zussman J (1966) An introduction to the rock-forming minerals. London Publisher, Longmans, Green and Co Ltd., London, p 495Google Scholar
  10. De Kock MO, Ernst R, Söderlund U, Jourdan F, Hofmann A, Le Gall B, Bertrand H, Chisonga BC, Beukes N, Rajesh HM, Moseki LM, Fuchs R (2014) Dykes of the 1.11 Ga Umkondo LIP, Southern Africa: clues to a complex plumbing system. Precambr Res 249:129–143CrossRefGoogle Scholar
  11. De Kock MO, Evans DAD, Dorland HC, Beukes NJ, Gutzmer J (2006) Paleomagnetism of the lower two unconformity-bounded sequences of the Waterberg Group, South Africa: towards a better-defined apparent polar wander path for the Paleoproterozoic Kaapvaal craton. S Afr J Geol 109:157–182CrossRefGoogle Scholar
  12. Dorland HC, Beukes NJ, Gutzmer J, Evans DAD, Armstrong RA (2006) Precise SHRIMP U–Pb zircon age constraints on the lower Waterberg and Soutpansberg Groups, South Africa. S Afr J Geol 109:139–156CrossRefGoogle Scholar
  13. Elburg M (2010) Sources and processes in arc magmatism: the crucial role of water. Geologica belgica 13:121–136Google Scholar
  14. Eriksson PG, Altermann W, Hartzer FJ (2006) The Transvaal Supergroup and its precursors. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The Geology of South Africa. Geological Society of South Africa, Johannesburg, Council for Geoscience, Pretoria, pp 237–260Google Scholar
  15. Ernst RE (2014) Large igneous provinces. Cambridge University Press, Cambridge, p 653CrossRefGoogle Scholar
  16. Ernst RE, Buchan KL (1997) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. Am Geophys Union Monogr 100:297–333Google Scholar
  17. Evans DAD, Gutzmer J, Beukes NJ, Kirschvink JL (2001) Paleomagnetic constraints on ages of mineralization in the Kalahari Manganese Field, South Africa. Econ Geol 96:621–631Google Scholar
  18. Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond Ser A 217:295–305CrossRefGoogle Scholar
  19. Geng H, Brandl G, Sun M, Wonga J, Kröner A (2014) Zircon ages defining deposition of the Palaeoproterozoic Soutpansberg Group and further evidence for Eoarchaean crust in South Africa. Precambr Res 249:247–262CrossRefGoogle Scholar
  20. Gumsley AP, Chamberlain KR, Bleeker W, Söderlund U, De Kock MO, Larsson ER, Bekker A (2017) Timing and tempo of the Great Oxidation Event. PNAS 114:1811–1816CrossRefGoogle Scholar
  21. Gumsley AP, De Kock MO, Rajesh HM, Knoper MW, Söderlund U, Ernst RE (2013) The Hlagothi Complex: the identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton. Lithos 174:333–348CrossRefGoogle Scholar
  22. Gumsley A, Olsson JR, Söderlund U, De Kock MO, Hofmann A, Klausen MB (2015) Precise U–Pb baddeleyite age dating of the Usushwana Complex, Southern Africa—implications for the Mesoarchaean magmatic and sedimentological evolution of the Pongola Supergroup, Kaapvaal Craton. Precamb Res 267:174–185CrossRefGoogle Scholar
  23. Gumsley A, Rådman J, Söderlund U, Klausen MB (2016) U–Pb baddeleyite geochronology and geochemistry of the White Mfolozi Dyke Swarm: unravelling the complexities of 2.70–2.66 Ga dyke swarms on across the eastern Kaapvaal Craton. South Africa GFF 138:115–132Google Scholar
  24. Hanson RE, Gose WA, Crowley JJ, Ramezani J, Bowring SA, Bullen DS, Hall RP, Pancake JA, Mukwakwami J (2004) Paleoproterozoic intraplate magmatism and basin development of the Kaapvaal Craton: age, paleomagnetism and geochemistry of ~1.93 to ~1.87 Ga post-Waterberg dolerites. S Afr J Geol 94:233–254CrossRefGoogle Scholar
  25. Hanson RE, Riox M, Gose WA, Blackburn TJ, Bowring SA, Mukwakwami J, Jones DL (2011) Paleomagnetic and geochronological evidence for large-scale post–1.88 Ga displacement between the Zimbabwe and Kaapvaal cratons along the Limpopo belt. Geology 39:487–490CrossRefGoogle Scholar
  26. Humbert F, De Kock MO, Altermann W, Elburg MA, Lenhardt N, Masango S (2017a) Petrology, physical volcanology, and geochemistry of a Palaeoproterozoic large igneous province: the Hekpoort formation in the southern Transvaal sub-basin (Kaapvaal Craton). Precambr Res 315:232CrossRefGoogle Scholar
  27. Humbert F, Sonnette L, De Kock MO, Robion P, Horng CS, Cousture A, Wabo H (2017b) Palaeomagnetism of the early Palaeoproterozoic, volcanic Hekpoort Formation (Transvaal Supergroup) of the Kaapvaal craton, South Africa. Geophys J Int 209:842–865CrossRefGoogle Scholar
  28. Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev 4:1889–1906Google Scholar
  29. Jones CH (2002) User-driven integrated software lives: “Paleomag” paleomagnetic analysis on the MacintoshTM. Comput Geosci 28:1145–1151CrossRefGoogle Scholar
  30. Jourdan F, Bertrand H, Scharer U, Blichert-Toft J, Feraud G, Kampunzu AB (2007) Major and trace elements and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana–Zimbabwe: Lithosphere versus Mantle plume contribution. J Petrol 48:1043–1077CrossRefGoogle Scholar
  31. Jourdan F, Féraud G, Bertrand H, Watkeys MK, Kampunzu AB, Le Gall B (2006) Basement control on dyke distribution in Large Igneous Provinces: case study of the Karoo triple junction. Earth Planet Sci Lett 241:307–322CrossRefGoogle Scholar
  32. Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and Granophyre. Earth Planet Sci Lett 144:369–387CrossRefGoogle Scholar
  33. Kirschvink JL (1980) The least-squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc 62:699–718CrossRefGoogle Scholar
  34. Klausen MB, Söderlund U, Olsson JR, Ernst RE, Armoogam M, Mkhize SW, Petzer G (2010) Petrological discrimination among Precambrian dyke swarms, eastern Kaapvaal craton (South Africa). Precambr Res 183:501–522CrossRefGoogle Scholar
  35. Kossert K, Günther E (2004) LSC measurements of the half-life of 40K. Appl Radiat Isot 60:459–464CrossRefGoogle Scholar
  36. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500–504CrossRefGoogle Scholar
  37. Larsson ER (2015) U–Pb baddeleyite dating of intrusions in the South–easternmost Kaapvaal craton (South Africa): revealing multiple events of dyke emplacement. Unpublished MSc thesis, Lund University, Lund, 30 pGoogle Scholar
  38. Lee J-Y, Marti K, Severinghaus JP, Kawamura K, Yoo H-S, Lee J-B, Kim J-S (2006) A redetermination of the isotopic abundances of atmospheric Ar. Geochim Cosmochim Acta 70:4507–4512CrossRefGoogle Scholar
  39. Letts S, Torsvik TH, Webb SJ, Ashwal LD (2010) New palaeoproterozoic palaeomagnetic data from the Kaapvaal Craton, South Africa. Geol Soc, London, Spec Publ 357:9–26CrossRefGoogle Scholar
  40. Letts S, Torsvik TH, Webb SJ, Ashwal LD (2009) Palaeomagnetism of the 2054 Ma Bushveld complex (South Africa): implications for emplacement and cooling. Geophys J Int 179:850–872CrossRefGoogle Scholar
  41. Letts S, Torsvik TH, Ashwal L, Webb S (2005) Palaeomagnetic and 40Ar/39Ar geochronology of mafic dykes from the eastern Bushveld Complex (South Africa). Geophys J Int 162:36–48CrossRefGoogle Scholar
  42. Lubnina L, Ernst RE, Klausen MB, Söderlund U (2010) Paleomagnetic study of NeoArchean-Paleoproterozoic dykes in the Kaapvaal craton. Precambr Res 183:523–552CrossRefGoogle Scholar
  43. Ludwig KR (2003) Isoplot 3.00; a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkeley, CA, Publication No. 4, 74 pGoogle Scholar
  44. Middelburg JJ, Van der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273CrossRefGoogle Scholar
  45. Moseley D (1984) Symplectic exsolution in olivine. Am Miner 69:139–153Google Scholar
  46. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  47. Olsson JR, Klausen MB, Hamilton MA, März N, Söderlund U, Roberts RJ (2016) Baddeleyite U-Pb ages and geochemistry of the 1875–1835 Ma Black Hills Dyke Swarm across north-eastern South Africa: part of a trans-Kalahari Craton back-arc setting? GFF 138:183–202CrossRefGoogle Scholar
  48. Olsson JR, Söderlund U, Klausen MB, Ernst RE (2010) U–Pb baddeleyite ages linking major Archean dyke swarms to volcanic rift-forming events in the Kaapvaal craton (South Africa), and a precise age of the Bushveld complex. Precambr Res 183:490–500CrossRefGoogle Scholar
  49. Palme H, O’Neill HSC (2014) Cosmochemical estimates of Mantle Composition. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp 1–38Google Scholar
  50. Renne PR, Swisher CC, Deino AL, Karner DB, Owens T, De Paolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology (Isotope Geoscience Section) 145:117–152Google Scholar
  51. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367CrossRefGoogle Scholar
  52. Renne PR, Norman EB (2001) Determination of the half-life of 37Ar by mass spectrometry. Physical Review C 63(047302):3Google Scholar
  53. Salminen J, Pesonen LJ, Reimold WU, Donadini D, Gibson RL (2009) Paleomagnetic and rock magnetic study of the Vredefort Impact Structure and the Johannesburg Dome, Kaapvaal craton, South Africa - Implications for the apparent polar wander path of the Kaapvaal craton during the Mesoproterozoic. Precambr Res 168:169–184CrossRefGoogle Scholar
  54. Söderlund U, Johansson L (2002) A simple way to extract baddeleyite (ZrO2). Geochem, Geophys, Geosyst 3:10–14CrossRefGoogle Scholar
  55. Söderlund U, Hofmann A, Klausen MB, Olsson JR, Ernst RE, Persson P-O (2010) Towards a complete magmatic barcode for the Zimbabwe craton: Baddeleyite U-Pb dating of regional dolerite dyke swarms and sill complexes. Precambr Res 183:388–398CrossRefGoogle Scholar
  56. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  57. Stoenner RW, Schaeffer OA, Katcoff S (1965) Half-lives of argon-37, argon-39, and argon-42. Science 148:1325–1328CrossRefGoogle Scholar
  58. Swanson-Hysell NL, Kilian TM, Hanson RE (2015) A new grand mean paleomagnetic pole for the 1.11 Ga Umkondo Large Igneous Province with implications for paleogeography and the geomagnetic field. Geophys J Int 203:2237–2247CrossRefGoogle Scholar
  59. Verwoerd WJ (2006) The Pilanesberg Alkaline Province. In: Johnston MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa, Johannesburg, Council for Geoscience, Pretoria, pp 381–393Google Scholar
  60. Wu F-Y, Yang Y-H, Li Q-L, Mitchell RH, Dawson JB, Brandl G, Yuhara M (2011) In situ determinations of U–Pb ages and Sr–Nd–Hf isotopic constraints on petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos 127:309–322CrossRefGoogle Scholar
  61. Zeh A, Ovtcharova M, Wilson AH, Schaltegger U (2015) The Bushveld Complex was emplaced and cooled in less than one million years-results of zirconology, and geotectonic implications. Earth planet Sci Lett 418:103–114CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • H. Wabo
    • 1
    • 2
    Email author
  • F. Humbert
    • 1
    • 2
  • M. O. de Kock
    • 1
    • 2
  • G. Belyanin
    • 1
    • 2
  • U. Söderlund
    • 3
  • L. P. Maré
    • 4
  • N. J. Beukes
    • 1
    • 2
  1. 1.Paleoproterozoic Mineralization Research Group (PPM Group)Auckland ParkSouth Africa
  2. 2.Department of GeologyDST-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis (CIMERA), University of JohannesburgAuckland ParkSouth Africa
  3. 3.Department of GeologyGeoBiosphere Science Centre, Lund UniversityLundSweden
  4. 4.Council for GeosciencePretoriaSouth Africa

Personalised recommendations