Advertisement

Magma Transport Pathways in Large Igneous Provinces: Lessons from Combining Field Observations and Seismic Reflection Data

  • Craig MageeEmail author
  • Richard E. Ernst
  • James Muirhead
  • Thomas Phillips
  • Christopher A.-L. Jackson
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Large Igneous Province (LIP) formation involves the generation, intrusion, and extrusion of significant volumes (typically > 1 Mkm3) of mainly mafic magma and is commonly associated with episodes of mantle plume activity and major plate reconfiguration. Within LIPs, magma transport through Earth’s crust over significant vertical (up to tens of kilometres) and lateral (up to thousands of kilometres) distances is facilitated by dyke swarms and sill-complexes. Unravelling how these dyke swarms and sill-complexes develop is critical to: (i) evaluating the spatial and temporal distribution of contemporaneous volcanism and hydrothermal venting, which can drive climate change; (ii) determining melt source regions and volume estimates, which shed light on the mantle processes driving LIP formation; and (iii) assessing the location and form of associated economic ore deposits. Here, we review how seismic reflection data can be used to study the structure and emplacement of sill-complexes and dyke swarms. We particularly show that seismic reflection data can reveal: (i) the connectivity of and magma flow pathways within extensive sill-complexes; (ii) how sill-complexes are spatially accommodated; (iii) changes in the vertical structure of dyke swarms; and (iv) how dyke-induced normal faults and pit chain craters can be used to locate sub-vertical dykes offshore.

Notes

Acknowledgements

CM is funded by a Junior Research Fellowship at Imperial College London. REE was partially supported from Mega-Grant 14.Y26.31.0012 of the government of the Russian Federation. JDM is supported by National Science Foundation grant EAR-1654518. We would like to thank Rajesh Srivastava for editorial handling and an anonymous reviewer and Dougal Jerram for their comments.

References

  1. Abdelmalak MM, Mourgues R, Galland O, Bureau D (2012) Fracture mode analysis and related surface deformation during dyke intrusion: results from 2D experimental modelling. Earth Planet Sci Lett 359:93–105CrossRefGoogle Scholar
  2. Abdelmalak MM, Andersen TB, Planke S, Faleide JI, Corfu F, Tegner C, Shephard GE, Zastrozhnov D, Myklebust R (2015) The ocean-continent transition in the mid-Norwegian margin: insight from seismic data and an onshore Caledonian field analogue. Geology 43(11):1011–1014CrossRefGoogle Scholar
  3. Acocella V, Korme T, Salvini F (2003) Formation of normal faults along the axial zone of the Ethiopian Rift. J Struct Geol 25(4):503–513CrossRefGoogle Scholar
  4. Agirrezabala LM (2015) Syndepositional forced folding and related fluid plumbing above a magmatic laccolith: insights from outcrop (Lower Cretaceous, Basque-Cantabrian Basin, western Pyrenees). Geol Soc Am Bull B31192. 31191Google Scholar
  5. Airoldi G, Muirhead JD, White JD, Rowland J (2011) Emplacement of magma at shallow depth: insights from field relationships at Allan Hills, south Victoria Land, East Antarctica. Antarct Sci Inst Subscription 23(3):281CrossRefGoogle Scholar
  6. Airoldi G, Muirhead JD, Zanella E, White JD (2012) Emplacement process of Ferrar Dolerite sheets at Allan Hills (South Victoria Land, Antarctica) inferred from magnetic fabric. Geophys J Int 188(3):1046–1060CrossRefGoogle Scholar
  7. Airoldi GM, Muirhead JD, Long SM, Zanella E, White JD (2016) Flow dynamics in mid-Jurassic dikes and sills of the Ferrar large igneous province and implications for long-distance magma transport. Tectonophysics 683:182–199CrossRefGoogle Scholar
  8. Annen C (2011) Implications of incremental emplacement of magma bodies for magma differentiation, thermal aureole dimensions and plutonism–volcanism relationships. Tectonophysics 500(1):3–10CrossRefGoogle Scholar
  9. Annen C, Blundy JD, Leuthold J, Sparks RSJ (2015) Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230:206–221CrossRefGoogle Scholar
  10. Archer SG, Bergman SC, Iliffe J, Murphy CM, Thornton M (2005) Palaeogene igneous rocks reveal new insights into the geodynamic evolution and petroleum potential of the Rockall Trough, NE Atlantic Margin. Basin Res 17(1):171–201CrossRefGoogle Scholar
  11. Ardakani EP, Schmitt DR, Currie CA (2017) Geophysical evidence for an igneous dike swarm, Buffalo Creek, Northeast Alberta. Geol Soc Am BullGoogle Scholar
  12. Aspler LB, Cousens BL, Chiarenzelli JR (2002) Griffin gabbro sills (2.11 Ga), Hurwitz Basin, Nunavut, Canada: long-distance lateral transport of magmas in western Churchill Province crust. Precambr Res 117(3–4):269–294CrossRefGoogle Scholar
  13. Baer G (1991) Mechanisms of dike propagation in layered rocks and in massive, porous sedimentary rocks. J Geophys Res Solid Earth 96(B7):11911–11929CrossRefGoogle Scholar
  14. Baragar W, Ernst R, Hulbert L, Peterson T (1996) Longitudinal petrochemical variation in the Mackenzie dyke swarm, northwestern Canadian Shield. J Petrol 37(2):317–359CrossRefGoogle Scholar
  15. Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dyke swarms: the key unlocking earth’s paleogeographic record back to 2.6 Ga. Dyke swarms—time markers of crustal evolution, pp 3–26Google Scholar
  16. Bosworth W, Stockli DF, Helgeson DE (2015) Integrated outcrop, 3D seismic, and geochronologic interpretation of Red Sea dike-related deformation in the Western Desert, Egypt-The role of the 23 Ma Cairo “mini-plume”. J Afr Earth Sci 109:107–119CrossRefGoogle Scholar
  17. Brown AR (2004) Interpretation of three-dimensional seismic data, vol 42. AAPG Memoir 42, SEG investigations in geophysics no. 9, 6th edn. AAPG and SEG, Oklahoma, USAGoogle Scholar
  18. Bryan SE, Ernst RE (2008) Revised definition of large igneous provinces (LIPs). Earth Sci Rev 86(1–4):175–202CrossRefGoogle Scholar
  19. Bryan SE, Ferrari L (2013) Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. GSA Bull 125(7–8):1053–1078CrossRefGoogle Scholar
  20. Bryan SE, Peate IU, Peate DW, Self S, Jerram DA, Mawby MR, Marsh JG, Miller JA (2010) The largest volcanic eruptions on Earth. Earth Sci Rev 102(3–4):207–229CrossRefGoogle Scholar
  21. Buchan KL, Ernst R (2004) Diabase dyke swarms and related unites in Canada and adjacent regions. Geol Surv CanGoogle Scholar
  22. Buchan K, Ernst R (2013) Diabase dyke swarms of Nunavut, Northwest Territories and Yukon, Canada. Geol Surv Can, Open File 7464(10.4095):293149Google Scholar
  23. Buchan KL, Ernst RE (2018a) A giant circumferential dyke swarm associated with the High Arctic Large Igneous Province (HALIP). Gondwana Res 58:39–57CrossRefGoogle Scholar
  24. Buchan KL, Ernst RE (2018b) Giant circumferential dyke swarms: catalogue and characteristics. In Srivastava RK, Ernst RE, Peng P (eds) Dyke swarms of the world – a modern perspective. Springer (in press)Google Scholar
  25. Buchan K, Mortensen J, Card K (1993) Northeast-trending early proterozoic dykes of southern superior province: multiple episodes of emplacement recognized from integrated paleomagnetism and U-Pb geochronology. Can J Earth Sci 30(6):1286–1296CrossRefGoogle Scholar
  26. Bunger AP, Menand T, Cruden A, Zhang X, Halls H (2013) Analytical predictions for a natural spacing within dyke swarms. Earth Planet Sci Lett 375:270–279CrossRefGoogle Scholar
  27. Burgess S, Bowring S, Fleming T, Elliot D (2015) High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis. Earth Planet Sci Lett 415:90–99CrossRefGoogle Scholar
  28. Burgess S, Muirhead J, Bowring S (2017) Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Commun 8(1):164CrossRefGoogle Scholar
  29. Burke K, Dewey J (1973) Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 81(4):406–433CrossRefGoogle Scholar
  30. Cartwright J, Hansen DM (2006) Magma transport through the crust via interconnected sill complexes. Geology 34(11):929–932CrossRefGoogle Scholar
  31. Cawthorn R (2012) Multiple sills or a layered intrusion? Time to decide. S Afr J Geol 115(3):283–290CrossRefGoogle Scholar
  32. Chevallier L, Woodford A (1999) Morpho-tectonics and mechanism of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S Afr J Geol 102(1):43–54Google Scholar
  33. Coffin MF, Eldholm O (1992) Volcanism and continental break-up: a global compilation of large igneous provinces. In: Storey BC, Alabaster T, Pankhurst RJ (eds) Magmatism and the causes of continental break-up, vol 68. vol 1. Geological Society of Special Publications, pp 17–30Google Scholar
  34. Coffin MF, Eldholm O (1994) Large igneous provinces: crustal structure, dimensions, and external consequences. Rev Geophys 32(1):1–36CrossRefGoogle Scholar
  35. Coffin MF, Eldholm O (2005) Large igneous provinces. Encycl Geol 315–323Google Scholar
  36. Cooper M, Anderson H, Walsh J, Van Dam C, Young M, Earls G, Walker A (2012) Palaeogene alpine tectonics and Icelandic plume-related magmatism and deformation in Northern Ireland. J Geol Soc 169(1):29–36CrossRefGoogle Scholar
  37. Cruden A, McCaffrey K, Bunger A (2017) Geometric scaling of tabular igneous intrusions: implications for emplacement and growthGoogle Scholar
  38. Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology 26(1):79–82CrossRefGoogle Scholar
  39. Dragoni M, Lanza R, Tallarico A (1997) Magnetic anisotropy produced by magma flow: theoretical model and experimental data from Ferrar dolerite sills (Antarctica). Geophys J Int 128(1):230–240CrossRefGoogle Scholar
  40. du Toit AL (1920) The Karroo dolerites of South Africa: a study in hypabyssal injection. S Afr J Geol 23(01):1–42Google Scholar
  41. Dumont S, Socquet A, Grandin R, Doubre C, Klinger Y (2016) Surface displacements on faults triggered by slow magma transfers between dyke injections in the 2005–2010 rifting episode at Dabbahu–Manda–Hararo rift (Afar, Ethiopia). Geophys J Int 204(1):399–417CrossRefGoogle Scholar
  42. Dumont S, Klinger Y, Socquet A, Doubre C, Jacques E (2017) Magma influence on propagation of normal faults: Evidence from cumulative slip profiles along Dabbahu-Manda-Hararo rift segment (Afar, Ethiopia). J Struct Geol 95:48–59CrossRefGoogle Scholar
  43. Ebinger CJ, Sleep N (1998) Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395(6704):788CrossRefGoogle Scholar
  44. Eide CH, Schofield N, Lecomte I, Buckley SJ, Howell JA (2017) Seismic interpretation of sill-complexes in sedimentary basins: The ‘sub-sill imaging problem’. J Geol Soc 175(2):193–209CrossRefGoogle Scholar
  45. Elliot DH (1992) Jurassic magmatism and tectonism associated with Gondwanaland break-up: an Antarctic perspective. Geol Soc Lond Special Publications 68(1):165–184CrossRefGoogle Scholar
  46. Elliot DH, Fleming TH (2000) Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28(6):539–542CrossRefGoogle Scholar
  47. Elliot DH, Fleming TH (2004) Occurrence and dispersal of magmas in the Jurassic Ferrar large igneous province, Antarctica. Gondwana Res 7(1):223–237CrossRefGoogle Scholar
  48. Elliot DH, Fleming TH (2017) The Ferrar Large Igneous Province: field and geochemical constraints on supra-crustal (high-level) emplacement of the magmatic system. Geol Soc Lon Special Publications 463:SP463CrossRefGoogle Scholar
  49. Elliot DH, Fleming TH, Kyle PR, Foland KA (1999) Long-distance transport of magmas in the Jurassic Ferrar large igneous province, Antarctica. Earth Planet Sci Lett 167(1):89–104CrossRefGoogle Scholar
  50. Emeleus CH, Bell B (2005) The Palaeogene volcanic districts of Scotland, vol 3. British Geological SurveyGoogle Scholar
  51. Encarnación J, Fleming TH, Elliot DH, Eales HV (1996) Synchronous emplacement of Ferrar and Karoo dolerites and the early breakup of Gondwana. Geology 24(6):535–538CrossRefGoogle Scholar
  52. Ernst RE (2014) Large igneous provinces. Cambridge University PressGoogle Scholar
  53. Ernst RE, Baragar WRA (1992) Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature 356(6369):511–513CrossRefGoogle Scholar
  54. Ernst RE, Bleeker W (2010) Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes: significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present This article is one of a selection of papers published in this Special Issue on the theme Lithoprobe—parameters, processes, and the evolution of a continent. Lithoprobe Contribution 1482. Geological Survey of Canada Contribution 20100072. Can J Earth Sci 47(5):695–739CrossRefGoogle Scholar
  55. Ernst RE, Buchan KL (1997a) Giant radiating dyke swarms: their use in identifying pre-Mesozoic large igneous provinces and mantle plumes. Large igneous provinces: continental, oceanic, and planetary flood volcanism, pp 297–333CrossRefGoogle Scholar
  56. Ernst RE, Buchan K (1997b) Layered mafic intrusions: a model for their feeder systems and relationship with giant dyke swarms and mantle plume centres. S Afr J Geol 100(4):319–334Google Scholar
  57. Ernst RE, Jowitt SM (2013) Large igneous provinces (LIPs) and metallogeny. In: Colpron M, Bissig T, Rusk BG, Thompson JFH (eds) Tectonics, metallogeny, and discovery: the North American Cordillera and similar accretionary settings, vol 17. Society of Economic Geologists Special Publication, pp 17–51Google Scholar
  58. Ernst RE, Youbi N (2017) How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr Palaeoclimatol Palaeoecol 478:30–52CrossRefGoogle Scholar
  59. Ernst RE, Head J, Parfitt E, Grosfils E, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39(1):1–58CrossRefGoogle Scholar
  60. Ernst RE, Grosfils E, Mege D (2001) Giant dike swarms: earth, venus, and mars. Annu Rev Earth Planet Sci 29(1):489–534CrossRefGoogle Scholar
  61. Ernst RE, Buchan KL, Campbell IH (2005) Frontiers in large igneous province research. Lithos 79(3):271–297CrossRefGoogle Scholar
  62. Ernst RE, Bleeker W, Söderlund U, Kerr AC (2013) Large igneous provinces and supercontinents: toward completing the plate tectonic revolution. Lithos 174:1–14CrossRefGoogle Scholar
  63. Ewart A, Milner SC, Duncan AR, Bailey M (2002) The Cretaceous Messum igneous complex, S.W. Etendeka, Namibia: reinterpretation in terms of a downsag-cauldron subsidence model. J Volcanol Geoth Res 114(3–4):251–273CrossRefGoogle Scholar
  64. Fahrig WF (1987) The tectonic setting of continental mafic dyke swarms: failed arm and early passive margin. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geological Association of Canada Special Paper 34, pp 331–348Google Scholar
  65. Ferrill DA, Wyrick DY, Morris AP, Sims DW, Franklin NM (2004) Dilational fault slip and pit chain formation on Mars. GSA Today 14(10):4CrossRefGoogle Scholar
  66. Ferrill DA, Wyrick DY, Smart KJ (2011) Coseismic, dilational-fault and extension-fracture related pit chain formation in Iceland: analog for pit chains on Mars. Lithosphere 3(2):133–142CrossRefGoogle Scholar
  67. Galerne CY, Neumann E-R, Planke S (2008) Emplacement mechanisms of sill complexes: information from the geochemical architecture of the Golden Valley Sill Complex, South Africa. J Volcanol Geoth Res 177(2):425–440CrossRefGoogle Scholar
  68. Galerne CY, Galland O, Neumann E-R, Planke S (2011) 3D relationships between sills and their feeders: evidence from the Golden Valley Sill Complex (Karoo Basin) and experimental modelling. J Volcanol Geoth Res 202(3–4):189–199CrossRefGoogle Scholar
  69. Galland O (2012) Experimental modelling of ground deformation associated with shallow magma intrusions. Earth Planet Sci Lett 317:145–156CrossRefGoogle Scholar
  70. Glazner AF, Bartley JM, Carl BS (1999) Oblique opening and noncoaxial emplacement of the Jurassic Independence dike swarm, California. J Struct Geol 21(10):1275–1283CrossRefGoogle Scholar
  71. Goulty NR, Schofield N (2008) Implications of simple flexure theory for the formation of saucer-shaped sills. J Struct Geol 30(7):812–817CrossRefGoogle Scholar
  72. Grant JV, Kattenhorn SA (2004) Evolution of vertical faults at an extensional plate boundary, southwest Iceland. J Struct Geol 26(3):537–557CrossRefGoogle Scholar
  73. Grapes R, Reid D, McPherson J (1974) Shallow dolerite intrusion and phreatic eruption in the Allan Hills region, Antarctica. NZ J Geol Geophys 17(3):563–577CrossRefGoogle Scholar
  74. Gudmundsson A (2003) Surface stresses associated with arrested dykes in rift zones. Bull Volcanol 65(8):606–619CrossRefGoogle Scholar
  75. Gudmundsson A, Brenner L (2004) Local stresses, dyke arrest and surface deformation in volcanic edifices and rift zones. Ann Geophys 47(4)Google Scholar
  76. Guldstrand F, Burchardt S, Hallot E, Galland O (2017) Dynamics of surface deformation induced by dikes and cone sheets in a cohesive Coulomb brittle crust. J Geophys Res Solid Earth 122(10):8511–8524CrossRefGoogle Scholar
  77. Gunn B, Warren G (1962) Geology of Victoria Land between the Mawson and Mulock Glaciers: New Zealand geological survey. Bulletin 71:133–135Google Scholar
  78. Halls H (1982) The importance and potential of mafic dyke swarms in studies of geodynamic processes. Geosci Can 9(3):145–154Google Scholar
  79. Hansen DM (2006) The morphology of intrusion-related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin. J Geol Soc 163:789–800CrossRefGoogle Scholar
  80. Hansen DM, Cartwright J (2006a) Saucer-shaped sill with lobate morphology revealed by 3D seismic data: implications for resolving a shallow-level sill emplacement mechanism. J Geol Soc 163(3):509–523CrossRefGoogle Scholar
  81. Hansen DM, Cartwright J (2006b) The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. J Struct Geol 28(8):1520–1535CrossRefGoogle Scholar
  82. Hansen DM, Cartwright JA, Thomas D (2004) 3D seismic analysis of the geometry of igneous sills and sill junction relationships. In: Davies RJ, Cartwright J, Stewart SA, Lappin M, Underhill JR (eds) 3D seismic technology: application to the exploration of sedimentary basins, vol 29, vol 1. Geological Society, London, Special Publications, pp 199–208CrossRefGoogle Scholar
  83. Hastie WW, Watkeys MK, Aubourg C (2014) Magma flow in dyke swarms of the Karoo LIP: implications for the mantle plume hypothesis. Gondwana Res 25(2):736–755CrossRefGoogle Scholar
  84. Head JW, Coffin MF (1997) Large igneous provinces: a planetary perspective. Large igneous provinces: continental, oceanic, and planetary flood Volcanism, pp 411–438CrossRefGoogle Scholar
  85. Hjartardóttir ÁR, Einarsson P, Gudmundsson MT, Högnadóttir T (2016) Fracture movements and graben subsidence during the 2014 Bárðarbunga dike intrusion in Iceland. J Volcanol Geoth Res 310:242–252CrossRefGoogle Scholar
  86. Hofmann B (2013) How do faults grow in magmatic rifts? LiDAR and InSAR observations of the Dabbahu rift segment, Afar. University of Leeds, EthiopiaGoogle Scholar
  87. Hofmann C, Courtillot V, Feraud G, Rochette P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389(6653):838CrossRefGoogle Scholar
  88. Holness M, Humphreys M (2003) The Traigh Bhàn na Sgùrra sill, Isle of Mull: flow localization in a major magma conduit. J Petrol 44(11):1961–1976CrossRefGoogle Scholar
  89. Hutton DHW (2009) Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacement—Theron Mountains, Antarctica. Petrol Geosci 15(3):269–278CrossRefGoogle Scholar
  90. Ishizuka O, Taylor RN, Geshi N, Mochizuki N (2017) Large-volume lateral magma transport from the Mull volcano: an insight to magma chamber processes. Geochem Geophys Geosyst 18(4):1618–1640CrossRefGoogle Scholar
  91. Ivanic T, Korsch R, Wyche S, Jones L, Zibra I, Blewett R, Jones T, Milligan P, Costelloe R, Van Kranendonk M (2013a) Preliminary interpretation of the 2010 Youanmi deep seismic reflection lines and magnetotelluric data for the Windimurra Igneous Complex. In: Youanmi and Southern Carnarvon seismic and magnetotelluric (MT) workshop, Geological Survey of Western Australia, RecordGoogle Scholar
  92. Ivanic T, Zibra I, Doublier M, Wyche S (2013b) Geological interpretation of the Youanmi and Southern Carnarvon seismic lines 10GA-YU1, 10GA-YU2, 10GA-YU3, and 11GA-SC1. Youanmi and Southern Carnarvon seismic and magnetotelluric (MT) workshop 2013. Geological Survey of Western AustraliaGoogle Scholar
  93. Jackson MD, Pollard DD (1988) The laccolith-stock controversy: new results from the southern Henry Mountains, Utah. Geol Soc Am Bull 100(1):117–139CrossRefGoogle Scholar
  94. Jackson CA-L, Schofield N, Golenkov B (2013) Geometry and controls on the development of igneous sill–related forced folds: a 2-D seismic reflection case study from offshore southern Australia. Geol Soc Am Bull 125(11–12):1874–1890CrossRefGoogle Scholar
  95. Jamtveit B, Svensen H, Podladchikov YY, Planke S (2004) Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Phys geol High-Level Mag Syst 234:233–241Google Scholar
  96. Jerram DA, Bryan SE (2015) Plumbing systems of shallow level intrusive complexes. In: Physical geology of shallow magmatic systems. Springer, Cham,, pp. 39–60CrossRefGoogle Scholar
  97. Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, I: field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics 18(3):261–309CrossRefGoogle Scholar
  98. Jolly R, Sanderson DJ (1995) Variation in the form and distribution of dykes in the Mull swarm, Scotland. J Struct Geol 17(11):1543–1557CrossRefGoogle Scholar
  99. Jowitt SM, Williamson M-C, Ernst RE (2014) Geochemistry of the 130 to 80 Ma Canadian High Arctic large igneous province (HALIP) event and implications for Ni-Cu-PGE prospectivity. Econ Geol 109(2):281–307CrossRefGoogle Scholar
  100. Karson JA, Brooks CK (1999) Structural and magmatic segmentation of the Tertiary East Greenland volcanic rifted margin. Geol Soc London Special Publications 164(1):313–338CrossRefGoogle Scholar
  101. Kavanagh JL, Boutelier D, Cruden A (2015) The mechanics of sill inception, propagation and growth: experimental evidence for rapid reduction in magmatic overpressure. Earth Planet Sci Lett 421:117–128CrossRefGoogle Scholar
  102. Kavanagh JL, Burns AJ, Hazim SH, Wood E, Martin SA, Hignett S, Dennis DJ (2018) Challenging dyke ascent models using novel laboratory experiments: implications for reinterpreting evidence of magma ascent and volcanism. J Volcanol Geoth ResGoogle Scholar
  103. Kendall J-M, Stuart G, Ebinger C, Bastow I, Keir D (2005) Magma-assisted rifting in Ethiopia. Nature 433(7022):146–148CrossRefGoogle Scholar
  104. Kirton S, Donato J (1985) Some buried Tertiary dykes of Britain and surrounding waters deduced by magnetic modelling and seismic reflection methods. J Geol Soc 142(6):1047–1057CrossRefGoogle Scholar
  105. Koch F, Johnson A, Pollard D (1981) Monoclinal bending of strata over laccolithic intrusions. Tectonophysics 74(3):T21–T31CrossRefGoogle Scholar
  106. Le Gall B, Daoud MA, Maury RC, Rolet J, Guillou H, Sue C (2010) Magma-driven antiform structures in the Afar rift: The Ali Sabieh range, Djibouti. J Struct Geol 32(6):843–854CrossRefGoogle Scholar
  107. Leat PT (2008) On the long-distance transport of Ferrar magmas. Geol Soc London Special Publications 302(1):45–61CrossRefGoogle Scholar
  108. Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J Geophys Res Solid Earth 96(B6):10049–10077CrossRefGoogle Scholar
  109. Macdonald R, Bagiński B, Upton BGJ, Dzierżanowski P, Marshall-Roberts W (2009) The Palaeogene Eskdalemuir dyke, Scotland: long-distance lateral transport of rhyolitic magma in a mixed-magma intrusion. Mineral Mag 73(3):285–300CrossRefGoogle Scholar
  110. Macdonald R, Bagiński B, Upton BGJ, Pinkerton H, MacInnes DA, MacGillivray JC (2010) The Mull Palaeogene dyke swarm: insights into the evolution of the Mull igneous centre and dyke-emplacement mechanisms. Mineral Mag 74(4):601–622CrossRefGoogle Scholar
  111. Macdonald R, Fettes D, Bagiński B (2015) The Mull Paleocene dykes: some insights into the nature of major dyke swarms. Scott J Geol 51(2):116–124CrossRefGoogle Scholar
  112. Magee C, Briggs F, Jackson CA-L (2013) Lithological controls on igneous intrusion-induced ground deformation. J Geol Soc 170(6):853–856CrossRefGoogle Scholar
  113. Magee C, Jackson CL, Schofield N (2014) Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Res 26(1):85–105CrossRefGoogle Scholar
  114. Magee C, Maharaj SM, Wrona T, Jackson CA-L (2015) Controls on the expression of igneous intrusions in seismic reflection data. Geosphere GES01150. 01151Google Scholar
  115. Magee C, Muirhead JD, Karvelas A, Holford SP, Jackson CA, Bastow ID, Schofield N, Stevenson CT, McLean C, McCarthy W (2016) Lateral magma flow in mafic sill complexes. Geosphere GES01256. 01251Google Scholar
  116. Magee C, Bastow ID, de Vries BvW, Jackson CA-L, Hetherington R, Hagos M, Hoggett M (2017) Structure and dynamics of surface uplift induced by incremental sill emplacement. Geology 45(5):431–434CrossRefGoogle Scholar
  117. Mäkitie H, Data G, Isabirye E, Mänttäri I, Huhma H, Klausen MB, Pakkanen L, Virransalo P (2014) Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria Dyke Swarm on the margin of a large igneous province in eastern Africa. J Afr Earth Sc 97:273–296CrossRefGoogle Scholar
  118. Malehmir A, Bellefleur G (2010) Reflection seismic imaging and physical properties of base-metal and associated iron deposits in the Bathurst Mining Camp, New Brunswick, Canada. Ore Geol Rev 38(4):319–333CrossRefGoogle Scholar
  119. Malthe-Sørenssen A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society, London, Special Publications, vol 234. Geological Society, London, Special Publications, pp 215–227CrossRefGoogle Scholar
  120. Mandler HAF, Clowes RM (1997) Evidence for extensive tabular intrusions in the Precambrian shield of western Canada: a 160-km-long sequence of bright reflections. Geology 25(3):271CrossRefGoogle Scholar
  121. Manga M, Michaut C (2017) Formation of lenticulae on Europa by saucer-shaped sills. Icarus 286:261–269CrossRefGoogle Scholar
  122. Mark N, Schofield N, Pugliese S, Watson D, Holford S, Muirhead D, Brown R, Healy D (2017) Igneous intrusions in the Faroe Shetland basin and their implications for hydrocarbon exploration; new insights from well and seismic data. Marine and Petroleum GeologyGoogle Scholar
  123. Marsh B (2004) A magmatic mush column rosetta stone: the McMurdo Dry Valleys of Antarctica. Eos Trans Am Geophys Union 85(47):497–502CrossRefGoogle Scholar
  124. Mastin LG, Pollard DD (1988) Surface deformation and shallow dike intrusion processes at Inyo Craters, Long Valley, California. J Geophys Res Solid Earth 93(B11):13221–13235CrossRefGoogle Scholar
  125. McBride JH, William Keach R, Leetaru HE, Smith KM (2018) Visualizing Precambrian basement tectonics beneath a carbon capture and storage site, Illinois Basin. Interpretation 6(2):T257–T270CrossRefGoogle Scholar
  126. Mège D, Cook AC, Garel E, Lagabrielle Y, Cormier MH (2003) Volcanic rifting at Martian grabens. J Geophys Res Planets 108(E5)Google Scholar
  127. Menand T (2008) The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet Sci Lett 267(1–2):93–99.  https://doi.org/10.1016/j.epsl.2007.11.043CrossRefGoogle Scholar
  128. Morgan S, Stanik A, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30(4):491–512CrossRefGoogle Scholar
  129. Morgan J, Warner M, Bell R, Ashley J, Barnes D, Little R, Roele K, Jones C (2013) Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion. Geophys J Int 195(3):1657–1678CrossRefGoogle Scholar
  130. Muirhead JD, Airoldi G, Rowland JV, White JD (2012) Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica. Geol Soc Am Bull 124(1–2):162–180CrossRefGoogle Scholar
  131. Muirhead JD, Airoldi G, White JD, Rowland JV (2014) Cracking the lid: sill-fed dikes are the likely feeders of flood basalt eruptions. Earth Planet Sci Lett 406:187–197CrossRefGoogle Scholar
  132. Muirhead JD, Kattenhorn SA, Le Corvec N (2015) Varying styles of magmatic strain accommodation across the East African Rift. Geochem Geophys Geosyst 16(8):2775–2795CrossRefGoogle Scholar
  133. Muirhead J, Kattenhorn S, Lee H, Mana S, Turrin B, Fischer T, Kianji G, Dindi E, Stamps D (2016) Evolution of upper crustal faulting assisted by magmatic volatile release during early-stage continental rift development in the East African Rift. Geosphere 12(6):1670–1700CrossRefGoogle Scholar
  134. Neumann ER, Svensen H, Galerne CY, Planke S (2011) Multistage evolution of dolerites in the Karoo large igneous province, Central South Africa. J Petrol 52(5):959–984CrossRefGoogle Scholar
  135. Pagli C, Wright TJ, Ebinger CJ, Yun S-H, Cann JR, Barnie T, Ayele A (2012) Shallow axial magma chamber at the slow-spreading Erta Ale Ridge. Nature Geosci 5(4):284–288CrossRefGoogle Scholar
  136. Passey S, Hitchen K (2011) Cenozoic (igneous). Geology of the Faroe-Shetland Basin and adjacent areas. British Geological Report Survey Research Report, RR/11/01; Jarofeingi Research Report RR/11/01Google Scholar
  137. Patterson CW, Ernst RE, Samson C (2016) Pit Chains belonging to radiating graben-fissure systems on venus: model for formation during lateral dyke injection. Acta Geol Sin (English Edition) 90(s1):143–144CrossRefGoogle Scholar
  138. Peron-Pinvidic G, Shillington DJ, Tucholke BE (2010) Characterization of sills associated with the U reflection on the Newfoundland margin: evidence for widespread early post-rift magmatism on a magma-poor rifted margin. Geophys J Int 182(1):113–136Google Scholar
  139. Phillips TB, Magee C, Jackson CA-L, Bell RE (2017) Determining the three-dimensional geometry of a dike swarm and its impact on later rift geometry using seismic reflection data. Geology 46(2):119–122CrossRefGoogle Scholar
  140. Pirajno F, Hoatson DM (2012) A review of Australia’s Large Igneous Provinces and associated mineral systems: implications for mantle dynamics through geological time. Ore Geol Rev 48:2–54CrossRefGoogle Scholar
  141. Planke S, Rasmussen T, Rey SS, Myklebust R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins. In: Doré AG (ed) Petroleum geology: north-west Europe and global perspectives—proceedings of the 6th petroleum geology conference. Geological Society, London, pp 833–844CrossRefGoogle Scholar
  142. Planke S, Svensen H, Myklebust R, Bannister S, Manton B, Lorenz L (2015) Geophysics and remote sensing. Springer, Berlin, Heidelberg, pp 1–16Google Scholar
  143. Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II: bending and failure of overburden layers and sill formation. Tectonophysics 18(3):311–354CrossRefGoogle Scholar
  144. Pollard DD, Delaney PT, Duffield WA, Endo ET, Okamura AT (1983) Surface deformation in volcanic rift zones. Tectonophysics 94(1–4):541–584CrossRefGoogle Scholar
  145. Polteau S, Ferré EC, Planke S, Neumann ER, Chevallier L (2008a) How are saucer-shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. J Geophys Res 113(B12)Google Scholar
  146. Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sørenssen A (2008b) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266(1):195–204CrossRefGoogle Scholar
  147. Preston RJ, Bell BR, Rogers G (1998) The Loch Scridain xenolithic sill complex, Isle of Mull, Scotland: fractional crystallization, assimilation, magma-mixing and crustal anatexis in subvolcanic conduits. J Petrol 39(3):519–550CrossRefGoogle Scholar
  148. Rabbel O, Galland O, Mair K, Lecomte I, Senger K, Spacapan JB, Manceda R (2018) From field analogues to realistic seismic modelling: a case study of an oil-producing andesitic sill complex in the Neuquén Basin, Argentina. J Geol Soc jgs2017–2116Google Scholar
  149. Reeves C (2000) The geophysical mapping of Mesozoic dyke swarms in southern Africa and their origin in the disruption of Gondwana. J Afr Earth Sc 30(3):499–513CrossRefGoogle Scholar
  150. Reeves J, Magee C, Jackson CAL (2018) Unravelling intrusion-induced forced fold kinematics and ground deformation using 3D seismic reflection data. Volcanica 1(1):17Google Scholar
  151. Reynolds P, Holford S, Schofield N, Ross A (2017) The shallow depth emplacement of mafic intrusions on a magma-poor rifted margin: an example from the Bight Basin, Southern Australia. Mar Pet Geol 88:605–616CrossRefGoogle Scholar
  152. Rivalta E, Taisne B, Bunger A, Katz R (2015) A review of mechanical models of dike propagation: schools of thought, results and future directions. Tectonophysics 638:1–42CrossRefGoogle Scholar
  153. Rowland J, Baker E, Ebinger C, Keir D, Kidane T, Biggs J, Hayward N, Wright T (2007) Fault growth at a nascent slow-spreading ridge: 2005 Dabbahu rifting episode, Afar. Geophys J Int 171(3):1226–1246CrossRefGoogle Scholar
  154. Rubin AM (1992) Dike-induced faulting and graben subsidence in volcanic rift zones. J Geophys Res Solid Earth 97(B2):1839–1858CrossRefGoogle Scholar
  155. Rubin AM (1995) Propogation of magma-filled cracks. Annu Rev Earth Planet Sci 23:49CrossRefGoogle Scholar
  156. Schmiedel T, Kjoberg S, Planke S, Magee C, Galland O, Schofield N, Jackson CA-L, Jerram DA (2017) Mechanisms of overburden deformation associated with the emplacement of the Tulipan sill, mid-Norwegian margin. Interpretation 5(3):SK23–SK38CrossRefGoogle Scholar
  157. Schofield N, Heaton L, Holford SP, Archer SG, Jackson CA-L, Jolley DW (2012a) Seismic imaging of ‘broken bridges’: linking seismic to outcrop-scale investigations of intrusive magma lobes. J Geol Soc 169(4):421–426CrossRefGoogle Scholar
  158. Schofield NJ, Brown DJ, Magee C, Stevenson CT (2012b) Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. J Geol Soc 169(2):127–141CrossRefGoogle Scholar
  159. Schofield N, Alsop I, Warren J, Underhill JR, Lehné R, Beer W, Lukas V (2014) Mobilizing salt: magma-salt interactions. Geology G35406. 35401Google Scholar
  160. Schofield N, Holford S, Millett J, Brown D, Jolley D, Passey SR, Muirhead D, Grove C, Magee C, Murray J, Hole M, Jackson CAL, Stevenson C (2017) Regional magma plumbing and emplacement mechanisms of the Faroe-Shetland sill complex: implications for magma transport and petroleum systems within sedimentary basins. Basin Res 29(1):41–63CrossRefGoogle Scholar
  161. Skogseid J, Pedersen T, Eldholm O, Larsen BT (1992) Tectonism and magmatism during NE Atlantic continental break-up: the Voring Margin. Geol Soc London, Special Publications 68(1):305–320Google Scholar
  162. Smallwood JR, Maresh J (2002) The properties, morphology and distribution of igneous sills: modelling, borehole data and 3D seismic from the Faroe-Shetland area. In: Jolley DW, Bell BR (eds) The north atlantic igneous province: stratigraphy, tectonic, volcanic and magmatic processes, vol 197, vol 1. Geological Society, London, Special Publications, pp 271–306CrossRefGoogle Scholar
  163. Spacapan JB, Galland O, Leanza HA, Planke S (2017) Igneous sill and finger emplacement mechanism in shale-dominated formations: a field study at Cuesta del Chihuido, Neuquén Basin, Argentina. J Geol Soc 174(3):422–433CrossRefGoogle Scholar
  164. Speight J, Skelhorn R, Sloan T, Knaap R (1982) The dyke swarms of Scotland. Igneous rocks of the British Isles 449–459Google Scholar
  165. Storey M, Duncan RA, Tegner C (2007) Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem Geol 241(3–4):264–281CrossRefGoogle Scholar
  166. Svensen H, Planke S, Malthe-Sorenssen A, Jamtveit B, Myklebust R, Rasmussen Eidem T, Rey SS (2004) Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429(6991):542–545CrossRefGoogle Scholar
  167. Svensen H, Jamtveit B, Planke S, Chevallier L (2006) Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa. J Geol Soc 163:11CrossRefGoogle Scholar
  168. Svensen H, Planke S, Chevallier L, Malthe-Sørenssen A, Corfu F, Jamtveit B (2007) Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett 256(3–4):554–566CrossRefGoogle Scholar
  169. Svensen H, Corfu F, Polteau S, Hammer Ø, Planke S (2012) Rapid magma emplacement in the Karoo Large Igneous Province. Earth Planet Sci Lett 325–326:1–9CrossRefGoogle Scholar
  170. Svensen HH, Polteau S, Cawthorn G, Planke S (2015) Sub-volcanic intrusions in the Karoo basin, South AfricaGoogle Scholar
  171. Tentler T (2005) Propagation of brittle failure triggered by magma in Iceland. Tectonophysics 406(1):17–38CrossRefGoogle Scholar
  172. Thomson K (2005) Volcanic features of the North Rockall Trough: application of visualisation techniques on 3D seismic reflection data. Bull Volcanol 67(2):116–128CrossRefGoogle Scholar
  173. Thomson K (2007) Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement mechanisms. Bull Volcanol 70(2):183–201CrossRefGoogle Scholar
  174. Thomson K, Hutton D (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volcanol 66(4):364–375CrossRefGoogle Scholar
  175. Torsvik TH, Smethurst MA, Burke K, Steinberger B (2008) Long term stability in deep mantle structure: Evidence from the ~300 Ma Skagerrak-Centered Large Igneous Province (the SCLIP). Earth Planet Sci Lett 267(3):444–452CrossRefGoogle Scholar
  176. Townsend MR, Pollard DD, Smith RP (2017) Mechanical models for dikes: a third school of thought. Tectonophysics 703:98–118CrossRefGoogle Scholar
  177. Trude J, Cartwright J, Davies RJ, Smallwood JR (2003) New technique for dating igneous sills. Geology 31:4CrossRefGoogle Scholar
  178. van Wyk de Vries B, Márquez A, Herrera R, Bruña JG, Llanes P, Delcamp A (2014) Craters of elevation revisited: forced-folds, bulging and uplift of volcanoes. Bull Volcanol 76(11):1–20Google Scholar
  179. Wall M, Cartwright J, Davies R, McGrandle A (2010) 3D seismic imaging of a Tertiary Dyke Swarm in the Southern North Sea, UK. Basin Res 22(2):181–194CrossRefGoogle Scholar
  180. Wilson L, Head JW (2002) Tharsis-radial graben systems as the surface manifestation of plume-related dike intrusion complexes: models and implications. J Geophys Res Planets 107(E8)Google Scholar
  181. Wilson PI, McCaffrey KJ, Wilson RW, Jarvis I, Holdsworth RE (2016) Deformation structures associated with the Trachyte Mesa intrusion, Henry Mountains, Utah: Implications for sill and laccolith emplacement mechanisms. J Struct Geol 87:30–46CrossRefGoogle Scholar
  182. Wingate MT, Pirajno F, Morris PA (2004) Warakurna large igneous province: a new Mesoproterozoic large igneous province in west-central Australia. Geology 32(2):105–108CrossRefGoogle Scholar
  183. Wyche S, Pawley M, Chen S, Ivanic T, Zibra I, Van Kranendonk M, Spaggiari C, Wingate M (2013) Geology of the northern Yilgarn Craton. In: Youanmi and Southern Carnarvon Seismic and Magnetotelluric (MT) Workshop 2013: extended abstracts, Compiled by S Wyche, TJ Ivanic and I Zibra. Geological Survey of Western Australia. RecordGoogle Scholar
  184. Wyrick DY, Smart KJ (2009) Dike-induced deformation and Martian graben systems. J Volcanol Geoth Res 185(1–2):1–11CrossRefGoogle Scholar
  185. Wyrick D, Ferrill DA, Morris AP, Colton SL, Sims DW (2004) Distribution, morphology, and origins of Martian pit crater chains. J Geophys Res 109(E6):E06005CrossRefGoogle Scholar
  186. Zaleski E, Eaton DW, Milkereit B, Roberts B, Salisbury M, Petrie L (1997) Seismic reflections from subvertical diabase dikes in an Archean terrane. Geology 25(8):707–710CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Craig Magee
    • 1
    • 2
    Email author
  • Richard E. Ernst
    • 3
    • 4
  • James Muirhead
    • 5
  • Thomas Phillips
    • 1
    • 6
  • Christopher A.-L. Jackson
    • 1
  1. 1.Basins Research Group, Department of Earth Science and EngineeringImperial College LondonLondonUK
  2. 2.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  3. 3.Department of Earth SciencesCarleton UniversityOttawaCanada
  4. 4.Department of Geology and GeographyTomsk State UniversityTomskRussia
  5. 5.Department of Earth SciencesSyracuse UniversitySyracuseUSA
  6. 6.Department of Earth SciencesDurham UniversityDurhamUK

Personalised recommendations