Advertisement

From Ophiolites to Oceanic Crust: Sheeted Dike Complexes and Seafloor Spreading

  • Jeffrey A. KarsonEmail author
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

Persistent, coordinated plate separation and dike intrusion generate sheeted dike complexes in oceanic crust at mid-ocean ridge spreading centers and other magmatic rifts. Although sheeted dike complexes were first described in ophiolite complexes, investigations of dikes, dike intrusion events and sheeted dike complexes in the oceanic crust have provided new constraints on how sheeted dike complexes form and their significance for the accretion of oceanic crust at spreading centers. Despite the general appearance of a monotonous array of side-by-side intrusions, details of sheeted dike complexes hold important keys to understanding the fundamentals of the tectonics, magma plumbing networks and hydrothermal/biological systems at mid-ocean ridges. In situ investigations of sheeted dikes and related upper crustal units in seafloor exposures provide fundamental observations that have implications for deformation during spreading, the reconstruction of ophiolite complexes, and the restoration of ophiolite structures to spreading center reference frames.

Notes

Acknowledgements

Thanks to the many colleagues who have contributed so much to our investigations of ophiolites, the geology of the oceanic crust at sea, and analogous subaerial terranes. Thanks also to the National Science Foundation for the support of these diverse projects. Reviews by Craig Magee and Paul Robinson helped improve the presentation of material and interpretations in this manuscript.

References

  1. Abbots IL (1979) Intrusive processes at ocean ridges: evidence from the sheeted dyke complex of Masirah Oman. Tectonophysics 60:217–233CrossRefGoogle Scholar
  2. Adamson AC (1985) Basement lithostratigraphy, deep sea drilling project hole 504B. In: Anderson RN, Honnorez J, Becker K (eds) Initial reports of the deep sea drilling project. 83. Washington, DC, U.S., Government Printing Office, pp 121–127Google Scholar
  3. Alexander RJ, Harper GD, Bowman JR (1993) Oceanic faulting and fault-controlled subseafloor hydrothermal alteration in the sheeted dike complex of the Josephine ophiolite. J Geophys Res 98:9731–9759CrossRefGoogle Scholar
  4. Alt JC, Kinoshita H, Stokking LB et al. (eds) (1993) Proceedings of the ocean drilling program, initial reports, Leg 148. Ocean Drilling Program, College Station, TX.  https://doi.org/10.2973/odp.proc.ir.148.1993
  5. Anderson EM (1951) The dynamics of faulting and dyke formation, 2nd edn. Oliver and Boyd, LondonGoogle Scholar
  6. Anderson RN, Honnorez J, Becker K, Adamson AC, Alt JC, Mottl MJ, Newmark RL (1982) DSDP Hole 504B, the first reference section over 1 km through Layer 2 of the oceanic crust. Nature 300:589–594CrossRefGoogle Scholar
  7. Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17:24–25Google Scholar
  8. ARCYANA (1975) Transform fault and rift valley from bathyscaph and diving saucer. Science 190:108–116CrossRefGoogle Scholar
  9. ARCYANA (1978) FAMOUS: photographic atlas of the Mid-Atlantic Ridge: rift and transform fault at 3000 m depth. Bordas, Paris, FranceGoogle Scholar
  10. Auzende J-M, Bideau D, Bonatti E, Cannat M, Honnorez J, Lagabrielle Y, Malavieille J, Mamaloukas-Frangoulis V, Mével C (1989) Direct observation of a section through slow-spreading oceanic crust. Nature 337:726–729CrossRefGoogle Scholar
  11. Auzende JM, Cannat M, Gente P, Henriet J-P, Juteau T, Karson JA, Lagabrielle Y, Mével C, Tivey M (1994) Observation of sections of oceanic crust and mantle cropping out on the southern wall of the Kane Fracture Zone (N. Atlantic). Terra Nova 6:143–148CrossRefGoogle Scholar
  12. Ballard RD, Francheteau J, Juteau T, Rangan C, Normark W (1981) EPR at 21°N: volcanic, tectonic and hydrothermal processes of the central axis. Earth Planet Sci Lett 55:1–10CrossRefGoogle Scholar
  13. Barager WRA (1954) Betts Pond Area, Burlington Peninsula, Newfoundland. Newfoundland Department of Mines, Open File Report. St. John’s, Newfoundland, CanadaGoogle Scholar
  14. Barager WRA, Lambert MB, Baglow N, Gibson IL (1990) The sheeted dyke zone in the Troodos ophiolite. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites and oceanic crustal analogues: proceedings of the symposium “Troodos 1987”. Cyprus Geological Survey Department, Nicosia, Cyprus, pp 37–51Google Scholar
  15. Cann JR (1968) Geological processes at mid-ocean ridge crests. Geophys J Roy Astron Soc 15:331–341CrossRefGoogle Scholar
  16. Cann JR (1974) A model for oceanic crustal structure developed. Geophys J Roy Astron Soc 39:169–187CrossRefGoogle Scholar
  17. Cann JR, Simkin T (1971) A bibliography of ocean-floor rocks. Philos Trans R Soc Lond 268:734–737Google Scholar
  18. Cann JR, Langseth MG, Honnorez J, Herzen RPV, White SM, et al (1983) Initial reports of the deep sea drilling project. Washington, DC, U.S., Goverment Publishing OfficeGoogle Scholar
  19. Carbotte SM, Macdonald KC (1992) East Pacific Rise 8°–10° 30′N: evolution of ridge segments and discontinuities from SeaMARC II and three-dimensional magnetic studies. J Geophys Res 97:6959–6982CrossRefGoogle Scholar
  20. Carbotte SM, Mutter C, Mutter J, Ponce-Correa G (1998) Influence of magma supply and spreading rate on crustal magma bodies and emplacement of the extrusive layer: insights from the East Pacific Rise at lat 16°N. Geology 26:455–458CrossRefGoogle Scholar
  21. Carbotte SM, Detrick RS, Harding A, Canales JP, Babcock J, Kent G, Van Ark E, Nedimovic M, Diebold J (2006) Rift topography linked to magmatism at the intermediate spreading Juan de Fuca Ridge. Geology 34:209–212CrossRefGoogle Scholar
  22. Carbotte SM, Canales JP, Nedimovic MR, Carton H, Mutter JC (2012) Recent seismic studies at the East Pacific Rise 8°20′–10°10′N and endeavour segment: insights into mid-ocean ridge hydrothermal and magmatic processes. Oceanography 25(1):100–112.  https://doi.org/10.5670/oceanog.2012.08CrossRefGoogle Scholar
  23. Casey JF, Karson JA, Elthon DL, Rosencrantz E, Titus M (1983) Reconstruction of the geometry of accretion during formation of the Bay of Islands Ophiolite Complex. Tectonics 2:509–528CrossRefGoogle Scholar
  24. CAYTROUGH (1979) Geological and geophysical investigation of the Mid-Cayman Rise spreading center: initial results and observations. In: Talwani M, Harrison CG, Hayes DE (eds) Deep drilling results in the Atlantic Ocean: ocean crust. Maurice Ewing series 2, pp 66–93Google Scholar
  25. Christensen NI, Salisbury MH (1982) Lateral heterogeneity in the seismic structure of the oceanic crust inferred from velocity studies in the Bay of Islands ophiolites, Newfoundland. Geophys J Roy Astron Soc 68:675–688CrossRefGoogle Scholar
  26. Christeson GL, Purdy GM, Fryer GJ (1992) Structure of young upper crust at the East Pacific Rise near 9° 30′N. Geophys Res Lett 19:1045–1048CrossRefGoogle Scholar
  27. Christeson GL, McIntosh KD, Karson JA (2007) Inconsistent correlation of seismic layer 2a and lava layer thickness in oceanic crust. Nature 445.  https://doi.org/10.1038/nature05517CrossRefGoogle Scholar
  28. Christeson GL, Morgan JV, Warner MR (2012) Shallow oceanic crust: full waveform tomographic images of the seismic layer 2A/2B boundary. J Geophys Res 117.  https://doi.org/10.1029/2011jb008972CrossRefGoogle Scholar
  29. Church WR, Stevens RK (1971) Early Paleozoic complexes of the Newfoundland Appalachians as mantle-oceanic crust sequences. J Geophys Res 76:1460–1466CrossRefGoogle Scholar
  30. Chutas LA (2007) Structures in upper oceanic crust: perspectives from pito deep and Iceland [Masters thesis]. Durham, NC, Duke UniversityGoogle Scholar
  31. Delaney JR, Kelley DS, Lilley MD, Butterfield DA, Baross JA, Embley RW, Summit M (1998) The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. Science 281:222–230CrossRefGoogle Scholar
  32. Detrick RS, Buhl P, Vera E, Mutter J, Orcutt J, Madsen J, Brocher T (1987) Multichannel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41CrossRefGoogle Scholar
  33. Dewey JF, Bird JM (1971) Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J Geophys Res 76:3179–3206CrossRefGoogle Scholar
  34. Dewey JF, Kidd WSF (1977) Geometry of plate accretion. Geol Soc Am Bull 88:960–968CrossRefGoogle Scholar
  35. Dick HJB, Tivey MA, Tuchoke BE (2008) Plutonic foundation of a slow-spreading ridge segment: the oceanic core complex at Kane megamullion, 23° 30′N, 42° 20′W. Geochem Geophys Geosyst 9(5).  https://doi.org/10.1029/2007gc001645CrossRefGoogle Scholar
  36. Dunn RA, Toomey DR, Solomon SC (2000) Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9° 30′N. J Geophys Res 105:23537–23555CrossRefGoogle Scholar
  37. DuToit AL (1929) The volcanic belt of the Lebombo—a region of tension. Trans Roy Soc S Afr 18:189–218CrossRefGoogle Scholar
  38. Dziak RP, Bohnenstiehl DR, Matsumoto H, Fowler MJ, Haxel JH, Tolstoy M, Waldhauser F (2009) January 2006 seafloor-spreading event at 9 50′ N, East Pacific Rise: ridge dike intrusion and transform fault interactions from regional hydroacoustic data. Geochem Geophys Geosyst 10(6).  https://doi.org/10.1029/2009gc002388CrossRefGoogle Scholar
  39. Dziak RP, Fox CG, Embley RW, Nabelek JL, Braunmiller J, Koski RA (2000) Recent tectonics of the Blanco Ridge, eastern Blanco Transform Fault Zone. Mar Geophys Res 21:423–450CrossRefGoogle Scholar
  40. Einarsson P, Brandsdottir B (1980) Seismological evidence for lateral magma intrusion during the July 1978 deflation of the Krafla volcano in NE-Iceland. J Geophys 47:160–165Google Scholar
  41. Engel CG, Fisher RL (1975) Granitic to ultramafic rock complexes of the Indian Ocean ridge system western Indian Ocean. Geol Soc Am Bull 86:1553–1578CrossRefGoogle Scholar
  42. Escartín J, Canales JP (2010) Chapman conference on Detachments in oceanic lithosphere: deformation, magmatism, fluid flow and ecosystems (conference report). EOS Trans Am Geophys Union 92:31.  https://doi.org/10.1029/2011eo040003CrossRefGoogle Scholar
  43. Ewing MA, Engel L (1962) Seismic shooting at sea. Sci Am 5:116–126CrossRefGoogle Scholar
  44. Fox PJ, Schreiber E, Peterson JJ (1973) The geology of the oceanic crust: compressional wave velocities of oceanic rocks. J Geophys Res 78:5155–5172CrossRefGoogle Scholar
  45. Francheteau J, Yelles-Chaouche A, Craig H (1987) The Juan Fernandez microplate north of the Pacific-Nazca-Antarctic plate junction at 35°S. Earth Planet Sci Lett 86:253–286CrossRefGoogle Scholar
  46. Francheteau J, Armijo R, Chiminee JL, Hékinian R, Lonsdale P, Blum N (1990) 1 Ma East Pacific Rise oceanic crust and uppermost mantle exposed by rifting in Hess Deep (equatorial Pacific Ocean). Earth Planet Sci Lett 101:281–295CrossRefGoogle Scholar
  47. Francheteau J, Armijo R, Cheminee JL, Hékinian R, Lonsdale P, Blum N (1992) Dyke complex of the East Pacific Rise exposed in the walls of Hess Deep and the structure of the upper oceanic crust. Earth Planet Sci Lett 111:109–121CrossRefGoogle Scholar
  48. Francheteau J, Armijo R, Cogné JP, Girardeau J, Constantin M, Hékinian R et al (1994) Submersible observations of the Easter microplate and its boundary. EOS T Am Geophys Un 75:582Google Scholar
  49. Gass IG (1968) Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42CrossRefGoogle Scholar
  50. Gillis K, Mével C, Allan J et al (1993) Proceedings of the ocean drilling program, initial reports, Leg 147. Ocean Drilling Program, College Station, TXGoogle Scholar
  51. Gillis KM, Muehlenbachs K, Stewart M, Gleeson T, Karson JA (2001) Fluid flow patterns in fast-spreading East Pacific Rise crust exposed at Hess Deep. J Geophys Res 106:26311–26329CrossRefGoogle Scholar
  52. Gillis KM, Snow JE, Klaus A, Abe N, Adriao AB, Akizawa N, Ceuleneer G, Cheadle MJ, Faak K, Falloon TJ, Friedman SA, Godard M, Guerin G, Harigane Y, Horst AJ, Hoshide T, Ildefonse B, Jean MM, John BE, Koepke J, Machi S, Maeda J, Marks NE, McCaig AM, Meyer R, Morris A, Nozaka T, Python M, Saha A, Wintsch RP (2013) Primitive layered gabbros from fast-spreading lower oceanic crust. Nature.  https://doi.org/10.1038/nature12778CrossRefGoogle Scholar
  53. Grandin R, Socquet A, Jacques E, Mazzoni N, de Chabalier J-B, King GCP (2010) Sequence of rifting in Afar, Manda-Hararo Rift, Ethiopia, 2005–2009: time-space evolution and interactions between dikes from interferometric synthetic aperture radar and static stress change modeling. J Geophys Res 115(B10).  https://doi.org/10.1029/2009jb000815
  54. Gudmundsson A (1983) Form and dimensions of dykes in eastern Iceland. Tectonophysics 95:295–307CrossRefGoogle Scholar
  55. Hanna HD (2004) Geochemical variations in basaltic glasses from an incipient rift and upper level gabbros from Hess Deep, Eastern Equatorial Pacific. M.S. thesis, Duke University, Durham, NCGoogle Scholar
  56. Hayman NW, Karson JA (2007) Faults and damage zones in fast-spread crust exposed on the north wall of the Hess Deep Rift: conduits and seals in seafloor hydrothermal systems. Geochem Geophys Geosyst 8(10):Q10002.  https://doi.org/10.11029/12007GC001623CrossRefGoogle Scholar
  57. Hayman NW, Karson JA (2009) Faulting and hydrothermal alteration in superfast spread crust of the East Pacific Rise exposed at Pito Deep. Geochem Geophys Geosyst 10.  https://doi.org/10.1029/2008gc002319CrossRefGoogle Scholar
  58. Heft K, Gillis KM, Pollock MA, Karson JA, Klein EM (2008) Constraints on the nature of axial hydrothermal systems from the sheeted dike complex exposed at Pito Deep. Geochem Geophys Geosyst 9(5).  https://doi.org/10.1029/2007gc001926CrossRefGoogle Scholar
  59. Heirtzler JR, LePichon X (1974) FAMOUS: a plate tectonics study of the genesis of the lithosphere. Geology (June):273–274CrossRefGoogle Scholar
  60. Helgason J, Zentilli M (1985) Field characteristics of laterally emplaced dikes: anatomy of exhumed Miocene dike swarm in Reydarfjordur, eastern Iceland. Tectonophysics 115:247–274CrossRefGoogle Scholar
  61. Horst AJ, Varga RJ, Gee JS, Karson JA (2011) Paleomagnetic constraints on constructional deformation of superfast-spread oceanic crust exposed at Pito Deep Rift. J Geophys Res 116(12).  https://doi.org/10.1029/2011jb008268
  62. Horst AJ, Varga RJ, Gee JS, Karson JA (2014) Diverse magma flow directions during construction of sheeted dike complexes at fast- to superfast-spreading centers. Earth Planet Sci Lett 408:119–131.  https://doi.org/10.1016/j.epsl.2014.09.022CrossRefGoogle Scholar
  63. Houtz R, Ewing J (1976) Upper crustal structure as a function of plate age. J Geophys Res 81:2490–2498CrossRefGoogle Scholar
  64. Hurst SD, Karson JA, Verosub KL (1994) Paleomagnetic study of tilted diabase dikes in fast-spread oceanic crust exposed at Hess Deep. Tectonics 13:789–802CrossRefGoogle Scholar
  65. Juteau T, Cannat M, Lagabrielle Y (1990) Serpentinized peridotites in the upper oceanic crust away from transform zones: a comparison of the results of previous DSDP and ODP legs. In: Detrick RS, Honnorez J, Bryan WB, Juteau T (eds) Proceedings of the ocean drilling program, scientific results, vol 106/109, Part B. Ocean Drilling Program, College Station, TX, pp 303–308Google Scholar
  66. Juteau T, Bideau O, Dauteuil G, Manc’h G, Naidoo DD, Nehlig P, Ondreas H, Tivey MA, Whipple KX, Delaney JR (1995) A submersible study in the western Blanco Fracture Zone, N.E. Pacific: lithostratigraphy, magnetic structure and magmatic and tectonic evolution during the last 1.6 Ma. Mar Geophys Res 17:399–430CrossRefGoogle Scholar
  67. Karson JA (1990) Seafloor spreading on the Mid-Atlantic Ridge: implications for the structure of ophiolites and oceanic lithosphere produced in slow-spreading environments. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites and oceanic crustal analogues: proceedings of the symposium “Troodos 1987”. Geological Survey Department, Nicosia, Cyprus, pp 125–130Google Scholar
  68. Karson JA (1998) Internal structure of oceanic lithosphere: a perspective from tectonic windows. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at Mid-Ocean Ridges. Geophysical monographs, vol 106. American Geophysical Union, Washington, DC, pp 177–218CrossRefGoogle Scholar
  69. Karson JA (2002) Geologic structure of uppermost oceanic crust created at fast- to intermediate-rate spreading centers. Annu Rev Earth Planet Sci 30:347–384CrossRefGoogle Scholar
  70. Karson JA, Brooks CK (1999) Structural and magmatic segmentation of the Tertiary East Greenland volcanic rifted margin. In: Ryan P, MacNiocaill C (eds) Continental tectonics, vol 164. Geological Society of London, Special Publication. Blackwell Scientific Publishers, London, pp 313–338CrossRefGoogle Scholar
  71. Karson JA, Dick HJB (1983) Tectonics of ridge-transform intersections at the Kane Fracture Zone, 24°N on the Mid-Atlantic Ridge. Mar Geophys Res 6:51–98CrossRefGoogle Scholar
  72. Karson JA, Thompson G, Humphris SE, Edmond JM, Bryan WB, Brown JR, Winters AT, Pockalny RA, Casey JF, Campbell AC, Klinkhammer G, Palmer MR, Kinzler RJ, Sulanowska MM (1987) Along-axis variations in seafloor spreading in the MARK area. Nature 328:681–685CrossRefGoogle Scholar
  73. Karson JA, Hurst SD, Lonsdale P (1992) Tectonic rotations of dikes in fast-spread oceanic crust exposed near Hess Deep. Geology 20:685–688CrossRefGoogle Scholar
  74. Karson JA, Klein EM, Hurst SD, Lee CE, Rivizzigno PA, Curewitz D, Morris AR, Hess Deep ’99 Scientific Party (2002a) Structure of uppermost fast-spread oceanic crust exposed at the Hess Deep Rift: implications for subaxial processes at the East Pacific Rise. Geochem Geophys Geosyst 3.  https://doi.org/10.1029/2001gc000155CrossRefGoogle Scholar
  75. Karson JA, Tivey MA, Delaney JR (2002b) Internal structure of uppermost oceanic crust along the western Blanco Transform Scarp: Implications for subaxial accretion and deformation at the Juan de Fuca Ridge. J Geophys Res 107. Paper Number 2000JB000007Google Scholar
  76. Karson JA, Francheteau J, Gee JS, Gillis KM, Hayman NW, Hékinian R, Hey RN, Hurst SD, Klein EM, Naar DF, Varga RG, Pito Deep 2005 Scientific Party (2005) Nested-scale investigation of tectonic windows into super-fast spread crust exposed at the Pito Deep Rift, Easter Microplate, SE Pacific. InterRidge News 14:5–8Google Scholar
  77. Karson JA, Kelley DS, Fornari DJ, Perfit MR, Shank TM (2015) Discovering the deep: a photographic atlas of the seafloor and oceanic crust. Cambridge University Press, LondonCrossRefGoogle Scholar
  78. Kidd RGW, Cann JR (1974) Chilling statistics indicate an ocean-floor spreading origin for the Troodos complex, Cyprus. Earth Planet Sci Lett 24:151–155CrossRefGoogle Scholar
  79. Kidd WSF, Dewey JF, Bird JM (1978) The Mings Bight ophiolite complex, Newfoundland: Appalachian oceanic crust and mantle. Can J Earth Sci 15:781–804CrossRefGoogle Scholar
  80. Klausen MB, Larsen HC (2002) East Greenland coast-parallel dike swarm and its role in continental breakup. Geol Soc Am Spec Pap 362:133–158Google Scholar
  81. Klitgord K, Casey JF, Agar S, Cruise Participants (1990) Cruise report of Russian Mir dives at Kings Trough (unpublished report)Google Scholar
  82. Larson RL, Popham CT, Pockalny RA (2005) Lithologic and structural observations at Endeavor Deep and their implications for the accretion process at fast to ultra-fast spreading rates. EOS, Trans Am Geophys Union 85(52):T33D–5094Google Scholar
  83. Lawrence RM, Karson JA, Hurst SD (1998) Dike orientations, fault-block rotations, and the construction of slow spreading oceanic crust at 22° 40′N on the Mid-Atlantic Ridge. J Geophys Res 103:663–676CrossRefGoogle Scholar
  84. Lonsdale P (1988) Structural pattern of the Galapagos microplate and evolution of the Galapagos triple junctions. J Geophys Res 93:13551–13574CrossRefGoogle Scholar
  85. Macdonald KC (1998) Linkages between faulting, volcanism, hydrothermal activity and segmentation on fast spreading centers. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at Mid-Ocean ridges. Geophysical monographs, vol 106. American Geophysical Union, Washington, DC, pp 27–58CrossRefGoogle Scholar
  86. Macdonald KC, Fox PJ, Perram LJ, Eisen MF, Haymon RM, Miller SP, Carbotte SM, Cormier M-H, Shor AN (1988) A new view of the mid-ocean ridge from the behaviour of ridge-axis discontinuities. Nature 335:217–225CrossRefGoogle Scholar
  87. MacLeod CJ, Teagle DAH, Gillis KM, James Cook Scientific Party (2008) Accretion of the lower oceanic crust at fast-spreading ridges: a rock drill and near bottom seafloor survey in support of IODP drilling in Hess Deep. Unpublished Cruise Report RRS James Cook Cruise JC21Google Scholar
  88. Martinez F, Taylor B (2013) Modes of crustal accretion in back-arc basins: inferences from the Lau Basin. In: Christie DM, Fisher CR, Lee S-M, Givens S (eds) Back-arc Spreading systematics: geological, biological, chemical and physical interactions, American geophysical union monograph series, Washington, DC, pp 5–30.  https://doi.org/10.1029/gm166Google Scholar
  89. Miyashiro A (1973) The Troodos ophiolite complex was probably formed in an volcanic arc. Earth Planet Sci Lett 19:218–224CrossRefGoogle Scholar
  90. Miyashiro A (1975) Discussion of “Origin of the Troodos and other ophiolites: a reply to Hynes”. Earth Planet Sci Lett 25:217–222CrossRefGoogle Scholar
  91. Miyashiro A, Shido F, Ewing M (1969) Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24° and 30°N lat. Contrib Miner Petrol 23:117–127CrossRefGoogle Scholar
  92. Miyashiro A, Shido F, Ewing MA (1971) Metamorphism in the Mid-Atlantic Ridge near 24°N and 30°N. Philos Trans R Soc Lond Ser A 268:589–603CrossRefGoogle Scholar
  93. Moores EM (1982) Origin and emplacement of ophiolites. Rev Geophys Space Phys 20:735–760CrossRefGoogle Scholar
  94. Moores EM, Vine FJ (1971) The Troodos massif, Cyprus, and other ophiolites as oceanic crust: evaluation and implications. Philos Trans R Soc Lond A268:443–466CrossRefGoogle Scholar
  95. Moores EM, Kellogg LH, Dilek Y (2000) Tehyan ophiolites, mantle convection, and tectonic “historical contingency”: a resolution of the “Ophiolite Conundrum”. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the ocean drilling program. Geological Society of America, Special Paper 349, Boulder, CO, pp 3–12CrossRefGoogle Scholar
  96. Murton BJ, Parson LM (1993) Segmentation, volcanism and deformation of oblique spreading centres: a quantitative study of the Reykjanes Ridge. Tectonophysics 222:237–257CrossRefGoogle Scholar
  97. Naar DF, Hey RN (1991) Tectonic evolution of the Easter Microplate. J Geophys Res 96:7961–7993CrossRefGoogle Scholar
  98. Naidoo DD (1998) Accretion of the upper oceanic crust. Ph.D. dissertation, University of Washington, Seattle, WAGoogle Scholar
  99. Natland JH, Dick HJB (1996) Melt migration through high-level gabbro cumulates of the East Pacific Rise at Hess Deep: the origin of magma lenses and the deep crustal structure of fast-spreading ridges. In: Mével C, Gillis KM, Allen JF (eds) Proceedings of the ocean drilling program, scientific results, vol 147. Ocean Drilling Program, College Station, TX, pp 21–58Google Scholar
  100. Nicolas A (1989) Structure of ophiolites and dynamics of oceanic lithosphere. Kluwer Academic Press, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  101. Nicolas A, Boudier F (1992) Rooting of the sheeted dike complex in the Oman Ophiolite. In: Parson LM, Murton BJ, Browning P (eds) Ophiolites and their modern oceanic analogues. Geological Society of London, Special Publication 60. Blackwell Scientific Publishers, London, pp 39–54Google Scholar
  102. Nicolas A, Boudier F, Meshi A (1999) Slow spreading accretion and mantle denudation in the Mirdita ophiolite (Albania). J Geophys Res 104:15155–15167CrossRefGoogle Scholar
  103. Nielsen TFD (1978) The Tertiary dike swarm of the Kangerlussuaq area, East Greenland: an example of magmatic development during continental break-up. Contrib Miner Petrol 67:63–78CrossRefGoogle Scholar
  104. OTTER (1984) The geology of the Oceanographer transform: the ridge-transform intersection. Mar Geophys Res 6:109–141CrossRefGoogle Scholar
  105. OTTER (1985) The geology of the Oceanographer Transform: the transform domain. Marine Geophys Res 7:329–358Google Scholar
  106. Pallister JS (1981) Structure of the sheeted dike complex of the Samail ophiolite near Ibra, Oman. J Geophys Res 86:2661–2672CrossRefGoogle Scholar
  107. Pallister JS, Hopson CA (1981) Samail ophiolite plutonic suite: field relations, phase variation and layering and a model of a spreading ridge magma chamber. J Geophys Res 86:2593–2644CrossRefGoogle Scholar
  108. Pariso JE, Johnson HP (1989) Magnetic properties and oxide petrography of the sheeted dike complex in Hole 504B. Proc Ocean Drill Program Sci Results Leg 111:159–166Google Scholar
  109. Pearce JA (2003) Suprasubduction zone ophiolites: the search for modern analogs. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geologic thought, special paper 373. Geological Society of America, Boulder, CO, pp 269–293Google Scholar
  110. Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300CrossRefGoogle Scholar
  111. Perk NW, Coogan LA, Karson JA, Klein EM (2007) Primitive gabbroic rocks from a tectonic window at Pito Deep: implications for the accretion of plutonic rocks beneath the East Pacific Rise. Contrib Miner Petrol 154(5):575–590.  https://doi.org/10.1007/s00410-007-0210-zCrossRefGoogle Scholar
  112. Pockalny RA, Larson RL (2003) Implications for crustal accretion at fast-spreading ridges from observations in Jurassic oceanic crust in the western Pacific. Geochem Geophys Geosyst 4.  https://doi.org/10.1029/2001gc000274
  113. Pollock MA, Klein EM, Karson JA, Coleman DS (2009) Compositions of dikes and lavas from the Pito Deep Rift: implications for accretion at superfast spreading centers. J Geophys Res 114(B03207).  https://doi.org/10.1029/2007jb005436
  114. Rioux M, Bowring S, Kelemen P, Gordon S, Miller R, Dudás F (2013) Tectonic development of the Samail ophiolite: high-precision U-Pb zircon geochronology and Sm-Nd isotopic constraints on crustal growth and emplacement. J Geophys Res Solid Earth 118:2085–2101.  https://doi.org/10.1002/jgrb.50139CrossRefGoogle Scholar
  115. Robinson PT, Melson WG, O’Hearn T, Schmincke H-U (1983) Volcanic glass compositions of the Troodos ophiolite, Cyprus. Geology 11:400–404CrossRefGoogle Scholar
  116. Robinson PT, Malpas J, Dilek Y, Zhou M-f (2008) The significance of sheeted dike complexes in ophiolites. GSA Today 18(11):4–10.  https://doi.org/10.1130/GSATG22ACrossRefGoogle Scholar
  117. Rosencrantz E (1982) Formation of uppermost oceanic crust. Tectonics 1:471–494CrossRefGoogle Scholar
  118. Rosencrantz E (1983) The structure of sheeted dikes and associated rocks in North Arm Massif, Bay of Islands ophiolite complex and the intrusive process at oceanic spreading centers. Can J Earth Sci 20:787–801CrossRefGoogle Scholar
  119. Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, Weissel RA, Ferrini V, Goodwillie A, Nitsche F, Bonczkowski J, Zemsky R (2009) Global multi-resolution topography synthesis. Geochem Geophys Geosyst 10(Q03014).  https://doi.org/10.1029/2008gc002332CrossRefGoogle Scholar
  120. Schouten H, Denham CR (2000) Comparison of volcanic construction in the Troodos ophiolite and oceanic crust using paleomagnetic inclinations from Cyprus Crustal Study Project (CCSP) CY-1 and CY-1A and Ocean Drilling Program (ODP) 504B drill cores. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the ocean drilling program, special paper 349. Geological Society of America, Boulder, CO, pp 181–194CrossRefGoogle Scholar
  121. Searle RC, Keeton JA, Owens RB, White RS, Mecklenburgh R, Parsons B, Lee SM (1998) The Reykjanes Ridge: structure and tectonics of a hot-spot-influenced, slow-spreading ridge, from multibeam bathymetry, gravity and magnetic investigations. Earth Planet Sci Lett 160:463–478CrossRefGoogle Scholar
  122. Shand SJ (1949) Rocks of the mid-Atlantic ridge. J Geol 57:89–92CrossRefGoogle Scholar
  123. Sigmundsson F, Hooper A, Hreinsdóttir S, Vogfjörd KS, Ófeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Árnadóttir T, Jónsdóttir K, Gudmundsson MT, Högnadóttir T, Fridriksdóttir HM, Hensch M, Einarsson P, Magnússon E, Samsonov S, Brandsdóttir B, White RS, Ágústsdóttir T, Greenfield T, Green RG, Hjartardóttir ÁR, Pedersen R, Bennett RA, Geirsson H, La Femina PC, Björnsson H, Pálsson F, Sturkell E, Bean CJ, Möllhoff M, Braiden AK, Eibl EPS (2015) Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517(7533):191–195CrossRefGoogle Scholar
  124. Sillman CJ (1987) A Canary Islands dyke swarm: implications for the formation of oceanic islands by extensional fissural volcanism. In: Halls HC, Fahrig WF (eds) Mafic Dyke swarms Geological Society of Canada special paper 34. Ottawa, pp 243–255Google Scholar
  125. Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, Canales JP, Dusunur D, Escartín J, Miranda JM (2006) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442:1029–1032.  https://doi.org/10.1038/nature05105CrossRefGoogle Scholar
  126. Stakes DS, Shervais JW, Hopson CA (1984) The volcanic-tectonic cycle of the FAMOUS and AMAR valleys, Mid-Atlantic Ridge (36° 47′N): evidence from basalt glass and phenocryst compositional variations for a steady state magma chamber beneath the valley midsections. J Geophys Res 89:6995–7028CrossRefGoogle Scholar
  127. Stewart MS, Klein EM, Karson JA (2002) The geochemistry of dikes and lavas from the north wall of the Hess Deep Rift: insights into the four-dimensional character of crustal construction at fast-spreading mid-ocean ridges. J Geophys Res 107(B9):2181.  https://doi.org/10.1029/2000JB000051CrossRefGoogle Scholar
  128. Stewart MA, Klein EM, Karson JA, Brophy JG (2003) Geochemical relationships between dikes and lavas at the Hess Deep Rift: implications for magma eruptibility. J Geophys Res 108(B4):2184.  https://doi.org/10.1029/2001JB001622CrossRefGoogle Scholar
  129. Stewart MA, Karson JA, Klein EM (2005) Four-dimensional upper crustal construction at fast-spreading mid-ocean ridges: a perspective from an upper crustal cross-section a the Hess Deep Rift. J Volcanol Geoth Res 144:287–309CrossRefGoogle Scholar
  130. Tartarotti P, Hayman NW, Anma R, Crispini L, Veloso E, Galli L, Parties IESS (2006) Structure of Hole 1256D: the role of mechanical deformation in superfast-spread crust. EOS, Trans Am Geophys Union, Fall Meeting Supplement 87(52):B31B–1091Google Scholar
  131. Tivey MA (1996) Vertical magnetic structure of ocean crust determined from near-bottom magnetic field measurements. J Geophys Res 101:20275–20296CrossRefGoogle Scholar
  132. Tivey MA, Johnson HP, Fleutelot C, Hussenoeder S, Lawrence R, Waters C, Wooding B (1998) Direct measurement of magnetic reversal polarity boundaries in a cross-section of oceanic crust. Geophys Res Lett 25:3631–3634CrossRefGoogle Scholar
  133. Varga RJ (1991) Modes of extension at mid-ocean ridge spreading centers: evidence from the Solea graben, Troodos ophiolite Cyprus. J Struct Geol 13:517–538CrossRefGoogle Scholar
  134. Varga RJ, Moores EM (1985) Spreading structure of the Troodos ophiolite, Cyprus. Geology 13:846–850CrossRefGoogle Scholar
  135. Varga RJ, Karson JA, Gee JS (2004) Paleomagnetic constraints on tilt and fault models for oceanic crust from oriented samples from the Hess Deep Rift, Equatorial Pacific Ocean. J Geophys Res 109(B2102):1–22.  https://doi.org/10.1029/2003jb002486
  136. Vera EE, Buhl P, Mutter JC, Harding AJ, Orcutt JA, Detrick RS (1990) The structure of 0-0.2 My old oceanic crust at 9°N in the East Pacific Rise from expanded spread profiles. J Geophys Res 95:15529–15556CrossRefGoogle Scholar
  137. Walker GPL (1964) Geological investigations in eastern Iceland. Bull Volcanol 27(1):351CrossRefGoogle Scholar
  138. Walker GPL (1986) Koolau dike complex, Oahu: intensity and origin of a sheeted dike complex high in a Hawaiian volcanic edifice. Geology 14:310–313CrossRefGoogle Scholar
  139. Walker GPL (1992) “Coherent intrusion complexes” in large basaltic volcanoes: a new structural model. J Volcanol Geoth Res 50(1):41–54CrossRefGoogle Scholar
  140. Walker GPL (1993) Basaltic-volcano systems. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society of London, special publication 76. Blackwell Scientific Publishers, London, pp 3–38Google Scholar
  141. Walker GPL (1999) Volcanic rift zones and their intrusion swarms. J Volcanol Geoth Res 94(1):21–34CrossRefGoogle Scholar
  142. Wilson DS, Teagle DAH, Acton GD (2003) Proceedings of the ocean drilling program, initial reports, Leg 206 [CD ROM]. Ocean Drilling Program, Texas A&M University, College Station, TXGoogle Scholar
  143. Wilson DS, Teagle DAH, Alt JA, Banerjee NR, Umino S, Miyashita S, Acton GD, Anma R, Barr SR, Belghoul A, Carlut J, Cristpini L, Durand SR, Einaudi F, Galli L, Gao Y, Geldmacher J, Gilbert LA, Hayman NW, Emilio H-B, Hirano N, Holter S, Ingle S, Jiang S, Kalberkamp U, Kerneklian M, Koepke J, Laverne C, Lledo Vasquez HL, Maclennnan J, Morgan S, Neo N, Nichols HJ, Park S-H, Reichow MK, Sakuyama T, Sano T, Sandwell R, Scheibner B, Smith-Duque CE, Swift SA, Tartarotti P, Tikku AA, Tominaga M, Veloso E, Yamasaki T, Yamasaki S, Ziegler C (2006) Drilling to gabbro in intact oceanic crust. Science 312:1016–1020CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesSyracuse UniversitySyracuseUSA

Personalised recommendations