Advertisement

Itô Process and Diffusion Models

  • Jia-An Yan
Chapter
Part of the Universitext book series (UTX)

Abstract

In this chapter we will introduce a general framework of financial market. In the first section we present some basic concepts and fundamental results on martingale methods in the pricing and hedging of European contingent claims under the Itô process setting. In Sect. 7.2 we show that within the diffusion process framework, the pricing and hedging of European contingent claims can be done through a PDE approach. In Sect. 7.3 we present two probabilistic methods for closed-form pricing of European options and illustrate these methods through examples. In the fourth section we briefly address the problem of pricing American contingent claims in diffusion models.

References

  1. Davis, M.H.A.: On Margrabe’s Formula. Mitsubishi Capital, London (1994)Google Scholar
  2. Goldenberg, D.H.: A unified method for pricing options on diffusion processes. J. Financ. Econ. 29, 3–34 (1991)CrossRefGoogle Scholar
  3. Jacod, J., Yor, M.: Etude des solutions extrémales et representation integrable de solutions pour certains problèmes de martingales. Z.W. 38, 83–125 (1977)Google Scholar
  4. Jiang, L.: Mathematical Models and Methods of Option Pricing. High Education Press, Beijing (2003, in Chinese)Google Scholar
  5. Karatzas, I.: On the pricing of American options. Appl. Math. Optim. 17, 37–60 (1988)MathSciNetCrossRefGoogle Scholar
  6. Karatzas, I.: Lectures on the Mathematics of Finance. CRM Monograph Series, vol. 8. American Mathematical Society, Providence (1997)Google Scholar
  7. Margrabe, W.: The value of an option to exchange one asset for another. J. Financ. 33, 177–186 (1978)CrossRefGoogle Scholar
  8. Musiela, M., Rutkowski, M.: Martingale Methods in Financial Modeling. Springer, Berlin/Heidelberg/New York (1997)CrossRefGoogle Scholar
  9. Wilmott, P., Dewynne, J., and Howison, S.: Option Pricing: Mathematical Models and Computations. Oxford Financial Press, and Oxford (1993)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  • Jia-An Yan
    • 1
  1. 1.Academy of Mathematics and System ScienceChineses Academy of SciencesBeijingChina

Personalised recommendations