Pricing and Hedging of Exotic Options

  • Jia-An Yan
Part of the Universitext book series (UTX)


Usually we call an option whose payoff at the exercise or expiry time depends only on the current price of the underlying asset (such as European option, American option, compound option, etc., studied in Chap.  5) a vanilla option (here “vanilla” stands for “ordinary”). Any option that is not vanilla is called an exotic option. Exotic options are widely used in investment and risk management by banks, corporations, and institutional investors.


  1. Conze, A., Viswanathan, R.: Path dependent options: the case of lookback options. J. Financ. 46(5), 1893–1907 (1991)CrossRefGoogle Scholar
  2. Freedman, D.: Brownian Motion and Diffusion. Springer, New York (1983)CrossRefGoogle Scholar
  3. Geman, H., Yor, M.: Bessel processes, Asian options and perpetuities. Math. Financ. 3, 349–375 (1993)CrossRefGoogle Scholar
  4. Geman, H., Yor, M.: Pricing and hedging double-barrier options: a probabilistic approach. Math. Financ. 6(4), 365–378 (1996)CrossRefGoogle Scholar
  5. Goldman, M.B., Sosin, H.B., Gatto, M.A.: Path dependent options: by at low, sell at the high. J. Financ. 34, 1111–1128 (1979)Google Scholar
  6. Gray, S, Whaley, R.: Reset put options: valuation, risk characteristics and an application. Aust. J. Manag. 24, 1–20 (1999)CrossRefGoogle Scholar
  7. Hoogland, J., Neumann, D.: Local scale invariance and contingent claim pricing. Int. J. Theor. Appl. Financ. 4(1), 1–21 (2001)MathSciNetCrossRefGoogle Scholar
  8. Hui, C.H.: One-touch double barrier binary option values. Appl. Financ. Econ. 6, 343–346 (1996)CrossRefGoogle Scholar
  9. Liao, S.-L, Wang, C.-W.: The valuation of reset options with multiple strike resets and reset dates. J. Futur. Mark. 23(1), 87–107 (2003)MathSciNetCrossRefGoogle Scholar
  10. Rogers, L.C.G., Shi, Z.: The value of an Asian option. J. Appl. Probab. 32, 1077–1088 (1995)MathSciNetCrossRefGoogle Scholar
  11. Rubinstein, M.: Exotic options. In: FORC Conference, Warwick (1992)Google Scholar
  12. Vecer, J.: A new PDE approach for pricing arithmetic average Asian options. J. Comput. Financ. 4(4), 105–113 (2001)CrossRefGoogle Scholar
  13. Vecer, J.: Unified pricing of Asian options. Risk 15(6), 113–116 (2002)Google Scholar
  14. Yang, Z., Huang, L., Ma, C.: Explicit expressions for the valuation and hedging of the arithmetic Asian option. J. Syst. Sci. Complex. 16(4), 557–561 (2003)MathSciNetzbMATHGoogle Scholar
  15. Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Probab. 24, 509–531 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  • Jia-An Yan
    • 1
  1. 1.Academy of Mathematics and System ScienceChineses Academy of SciencesBeijingChina

Personalised recommendations