Advertisement

Stochastic Calculus and Semimartingale Model

  • Jia-An Yan
Chapter
Part of the Universitext book series (UTX)

Abstract

K. Itô invented his famous stochastic calculus on Brownian motion in the 1940s. In the 1960s and 1970s, the “Strasbourg school,” headed by P.A. Meyer, developed a modern theory of martingales, the general theory of stochastic processes, and stochastic calculus on semimartingales. It turned out soon that semimartingales constitute the largest class of right continuous adapted integrators with respect to which stochastic integrals of simple predictable integrands satisfy the theorem of dominated convergence in probability. Stochastic calculus on semimartingales not only became an important tool for modern probability theory and stochastic processes but also has broad applications to many branches of mathematics, physics, engineering, and mathematical finance.

References

  1. Ansel, J.-P., Stricker, C.: Couverture des actifs contingents. Ann. Inst. H. Poincaré Probab. Stat. 30, 303–315 (1994)zbMATHGoogle Scholar
  2. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)MathSciNetCrossRefGoogle Scholar
  3. Delbaen, F., Schachermayer, W. (1995): The no-arbitrage property under a change of numeraire. Stoch. Stoch. Rep. 53, 213–226MathSciNetCrossRefGoogle Scholar
  4. Doléans-Dade, C.: Quelques applications de la formule de changement de variables pour les semimartingales. Z. W. 16, 181–194 (1970)MathSciNetCrossRefGoogle Scholar
  5. El Karoui, N., Quenez, M.C.: Dynamic programming and pricing of contingent claims in an incomplete market. S. I. S. M. J. Control Optim. 33, 29–66 (1995)MathSciNetCrossRefGoogle Scholar
  6. Föllmer, H., Kabanov, Yu.M.: Optional decomposition theorem and Lagrange multipliers. Financ. Stoch. 2, 69–81 (1998)zbMATHGoogle Scholar
  7. He, S.W., Wang, J.G., Yan, J.A.: Semimartingale theory and stochastic calculus. Science Press/CRC Press, Beijing/Boca Raton (1992)zbMATHGoogle Scholar
  8. Jacka, S.D.: A martingale representation result and an application to incomplete financial markets. Math. Financ. 2(4), 239–250 (1992)CrossRefGoogle Scholar
  9. Jacod, J.: Calcul stochastique et problémes de martingales. Lecturer Notes in Mathematics, vol. 714, Springer, Berlin/Heidelberg/New York (1979)CrossRefGoogle Scholar
  10. Kramkov, D.: Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Relat. Fields 105, 459–479 (1996)MathSciNetCrossRefGoogle Scholar
  11. Kreps, D.M.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981)MathSciNetCrossRefGoogle Scholar
  12. Mel’nikov, A.V., Volkov, S.N., Nechaev, M.L.: Mathematics of Financial Obligations. Translations of Mathematical Monographs, vol. 212. American Mathematical Society, Providence (2002)Google Scholar
  13. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)CrossRefGoogle Scholar
  14. Meyer, P.A.: A decomposition theorem for supermartingales. Ill. J. Math. 6, 193–205 (1962)MathSciNetzbMATHGoogle Scholar
  15. Stricker, C., Yan, J.A.: Some remarks on the optional decomposition theorem. In: Séminaire de Probabilités XXXII. Lecturer Notes in Mathematics, vol. 1686, pp. 56–66 (1998). Springer, BerlinCrossRefGoogle Scholar
  16. Yan, J.A.: Introduction to Martingales and Stochastic Integrals. Shanghai Science and Technology Press, Shanghai (1981, in Chinese)Google Scholar
  17. Yan, J.A.: A new look at the fundamental theorem of asset pricing. J. Korean Math. Soc. 35(3), 659–673 (1998)MathSciNetzbMATHGoogle Scholar
  18. Yan, J.A.: Semimartingale theory and stochastic calculus. In: Kannan, D., Lakshmikantham, V. (eds.) Handbook of Stochastic Analysis and Applications. Marcel Dekker, Inc., New York, pp. 47–106 (2002b)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press 2018

Authors and Affiliations

  • Jia-An Yan
    • 1
  1. 1.Academy of Mathematics and System ScienceChineses Academy of SciencesBeijingChina

Personalised recommendations