• Shangzhu JinEmail author
  • Qiang Shen
  • Jun Peng


This chapter presents a high-level summary of the work documented in this book. The main contributions include: an innovative concept and approaches for backward fuzzy rule interpolation (BFRI) and its application.


  1. 1.
    P. Baranyi, L.T. Kóczy, T.D. Gedeon, A generalized concept for fuzzy rule interpolation. IEEE Trans. Fuzzy Syst. 12(6), 820–837 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Kovács, Extending the fuzzy rule interpolation “five” by fuzzy observation. Comput. Intell. Theory Appl. 38, 485–497 (2006)Google Scholar
  3. 3.
    S. Chen, Y. Ko, Fuzzy interpolative reasoning for sparse fuzzy rule-based systems based on \(\alpha \)-cuts and transformations techniques. IEEE Trans. Fuzzy Syst. 16(6), 1626–1648 (2008)CrossRefGoogle Scholar
  4. 4.
    G. Feng, A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  5. 5.
    F. Hoffmann, D. Schauten, S. Holemann, Incremental evolutionary design of tsk fuzzy controllers. IEEE Trans. Fuzzy Syst. 15(4), 563–577 (2007)CrossRefGoogle Scholar
  6. 6.
    Y. Jin, Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst. 8(2), 212–221 (2000)CrossRefGoogle Scholar
  7. 7.
    T.A. Johansen, R. Shorten, R. Murray-Smith, On the interpretation and identification of dynamic takagi-sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 8(3), 297–313 (2000)CrossRefGoogle Scholar
  8. 8.
    P. Baranyi, P. Korondi, H. Hashimoto, M. Wada, Fuzzy inversion and rule base reduction, in Proceedings of International Conference on Intelligent Engineering Systems (1997), pp. 301–306Google Scholar
  9. 9.
    A.R. Várkonyi-Kóczy, A. Almos, T. Kovácsházy, Genetic algorithms in fuzzy model inversion, in Proceedings of International Conference on Fuzzy Systems, vol. 3 (1999), pp. 1421–1426Google Scholar
  10. 10.
    A.R. Várkonyi-Kóczy, G. Péceli, T.P. Dobrowiecki, T. Kovácsházy, Iterative fuzzy model inversion, in Proceedings of International Conference on Fuzzy Systems, vol. 1 (1998), pp. 561–566Google Scholar
  11. 11.
    T. Boongoen, Q. Shen, Nearest-neighbor guided evaluation of data reliability and its applications. IEEE Trans. Syst. Man Cybern. 40(6), 1622–1633 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Diao, Q. Shen, Feature selection with harmony search. IEEE Trans. Syst. Man Cybern. B 42(6), 1509–1523 (2012)CrossRefGoogle Scholar
  13. 13.
    N.M. Parthalain, R. Jensen, Simultaneous feature and instance selection using fuzzy-rough bireducts, in Proceedings of International Conference on Fuzzy Systems (2013), pp. 1–7Google Scholar
  14. 14.
    R. Diao, S. Jin, Q. Shen, Antecedent selection in fuzzy rule interpolation using feature selection techniques, in Proceedings of IEEE International Conference on Fuzzy Systems (2014), pp. 2206–2213Google Scholar
  15. 15.
    N. Mac Parthaláin, R. Jensen, Measures for unsupervised fuzzy-rough feature selection. Int. J. Hybrid Intell. Syst. 7(4), 249–259 (2010)CrossRefGoogle Scholar
  16. 16.
    N. Mac Parthaláin, R. Jensen, Fuzzy-rough set based semi-supervised learning, in IEEE International Conference on Fuzzy Systems (2011), pp. 2465–2472Google Scholar
  17. 17.
    J. Zhao, K. Lu, X. He, Locality sensitive semi-supervised feature selection. Neurocomputing 71(10–12), 1842–1849 (2008)CrossRefGoogle Scholar
  18. 18.
    Y. Narukawa, in Modeling Decisions: Information Fusion and Aggregation Operators. Cognitive Technologies (Springer, 2010)Google Scholar
  19. 19.
    R. Yager, On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)MathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Waltz, Understanding line drawings of scenes with shadows, in The Psychology of Computer Vision (McGraw-Hill, 1975), pp. 11–91Google Scholar
  21. 21.
    I. Miguel, Q. Shen, Fuzzy rrDFCSP and planning. Artif. Intell. 148(1), 11–52 (2003)CrossRefGoogle Scholar
  22. 22.
    M. Lee, H. Chung, F. Yu, Modeling of hierarchical fuzzy systems. Fuzzy Sets Syst. 138(2), 343–361 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M. Wagenknecht, K. Hartmann, Fuzzy modelling with tolerances. Fuzzy Sets and Syst. 20(3), 325–332 (1986)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D. Wang, X. Zeng, J. Keane, Intermediate variable normalization for gradient descent learning for hierarchical fuzzy system. IEEE Trans. Fuzzy Syst. 17(2), 468–476 (2009)CrossRefGoogle Scholar
  25. 25.
    N. Naik, R. Diao, C. Quek, Q. Shen, Towards dynamic fuzzy rule interpolation, in Proceedings of International Conference on Fuzzy Systems (2013), pp. 1–7Google Scholar
  26. 26.
    L. Wang, Universal approximation by hierarchical fuzzy systems. Fuzzy Sets Syst. 93(2), 223–230 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    L. Wang, Analysis and design of hierarchical fuzzy systems. IEEE Trans. Fuzzy Syst. 7(5), 617–624 (1999)CrossRefGoogle Scholar
  28. 28.
    M.G. Joo, A method of converting conventional fuzzy logic system to 2 layered hierarchical fuzzy system, in Proceedings of International Conference on Fuzzy Systems, vol. 2 (2003), pp. 1357–1362Google Scholar
  29. 29.
    D. Wang, X.-J. Zeng, J.A. Keane, Learning for hierarchical fuzzy systems based on the gradient-descent method, in Proceedings of International Conference on Fuzzy Systems (2006), pp. 92–99Google Scholar
  30. 30.
    Y.J.W.W.H. Wang, S. Kwong, K.F. Man, Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction. Fuzzy Sets Syst. 149(1), 149–186 (2005)MathSciNetCrossRefGoogle Scholar
  31. 31.
    X.-J. Zeng, J.Y. Goulermas, P. Liatsis, D. Wang, J.A. Keane, Hierarchical fuzzy systems for function approximation on discrete input spaces with application. IEEE Trans. Fuzzy Syst. 16, 1197–1215 (2008)CrossRefGoogle Scholar
  32. 32.
    X.-J. Zeng, J.A. Keane, Approximation capabilities of hierarchical fuzzy systems. IEEE Trans. Fuzzy Syst. 13, 659–672 (2005)Google Scholar
  33. 33.
    T. Arnould, S. Tano, Interval-valued fuzzy backward reasoning. IEEE Trans. Fuzzy Syst. 3(4), 425–437 (1995)CrossRefGoogle Scholar
  34. 34.
    N. Xiong, L. Litz, Reduction of fuzzy control rules by means of premise learning-method and case study. Fuzzy Sets Syst. 132(2), 217–231 (2002)MathSciNetCrossRefGoogle Scholar
  35. 35.
    N. Xiong, L. Litz, Adaptive fuzzy interpolation. IEEE Trans. Fuzzy Syst. 19(6), 1107–1126 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Chawla, J.G. Davis, G. Pandey, On local pruning of association rules using directed hypergraphs, in ICDE, vol. 4 (2004), pp. 832–841Google Scholar
  37. 37.
    A. Di Nola, W. Pedrycz, S. Sessa, Fuzzy relation equations with equality and difference composition operators. Fuzzy Sets Syst. 25(2), 205–215 (1988)MathSciNetCrossRefGoogle Scholar
  38. 38.
    L. Fu, Rule generation from neural networks. IEEE Trans. Syst. Man Cybern. 24(8), 1114–1124 (1994)CrossRefGoogle Scholar
  39. 39.
    I. Gadaras, L. Mikhailov, An interpretable fuzzy rule-based classification methodology for medical diagnosis. Artif. Intell. Med. 47(1), 25–41 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Tajbakhsh, M. Rahmati, A. Mirzaei, Intrusion detection using fuzzy association rules. Appl. Soft Comput. 9(2), 462–469 (2009)CrossRefGoogle Scholar
  41. 41.
    K.W. Wong, D. Tikk, T.D. Gedeon, L.T. Kóczy, Fuzzy rule interpolation for multidimensional input spaces with applications: a case study. IEEE Trans. Fuzzy Syst. 13(6), 809–819 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Institute of Mathematics, Physics and Computer ScienceAberystwyth UniversityAberystwythUK

Personalised recommendations