Skip to main content

Bioreduction of Hexavalent Chromium Using Microalgae

  • Chapter
  • First Online:
The Role of Microalgae in Wastewater Treatment

Abstract

Hexavalent chromium (Cr(VI)) is enriched in the water system of environment above the regulatory level due to different human activities. Cr(VI) has the chemical properties favorable for its dissolution in the water environment at an elevated concentration level. This concerns the environmentalists as Cr(VI) in water is carcinogenic to different organs of the living organisms. Different techniques like chemical, biological, and combination of both have been undertaken using various methods to remove Cr(VI) from the water. Primarily bioremediation including bioreduction and biosorption has potential to remove Cr(VI) from water. Also some other processes like microbial fuel cells and biostimulation sideline the Cr(VI) removal from water along with different primary objectives. Among the living organism, microalgae have great potential to remove Cr(VI) from water. They have the unique photosynthesis and cellular metabolisms compensating the Cr(VI) removal. The use of microalgae in bioremediation for removal of pollutants from the contaminated water is a practical interest due to different advantages as it requires low energy with reduced sludge formation and carbon dioxide sequestration. Most of the algae follow an adsorption followed by reduction of Cr(VI) during the bioremediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United States Geological Survey (USGS) (1998) Ground water and surface water: a single resource. Circular 1139 by Denver, C

    Google Scholar 

  2. Bureau of Indian Standards (2012) Indian standard drinking water specification (second revision), ICS 13.060.20, IS 10500:2012

    Google Scholar 

  3. United States Environmental Protection Agency (2009) National primary drinking water regulations. EPA 816-F-09-004

    Google Scholar 

  4. Pradhan D, Sukla LB, Sawyer M, Rahman PKSM (2017) Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2017.06.040 in press

  5. Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46

    Article  CAS  Google Scholar 

  6. Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water Air Soil Pollut 222:103–148

    Article  CAS  Google Scholar 

  7. Bielicka A, Bojanowska I, Wiśniewski A (2005) Two faces of chromium-pollutant and bioelement. Pol J Environ Stud 14(1):5–10

    CAS  Google Scholar 

  8. Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250-251:272–291

    Article  CAS  Google Scholar 

  9. Westbrook J (1983) Chromium and chromium alloys. In: Grayson M (ed) Kirk-Othmer encyclopedia of chemical technology, vol 6, 3rd edn. Wiley-Interscience, New York, pp 54–82

    Google Scholar 

  10. Malaviya P, Singh A (2016) Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 42(4):607–633

    CAS  Google Scholar 

  11. Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223-224:1–12

    Article  Google Scholar 

  12. Langard S (1990) One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports. Am J Ind Med 17:189–215

    Article  CAS  Google Scholar 

  13. Geological Survey of Japan (2005) Atlas of Eh-pH diagrams, intercomparison of thermodynamic databases. Open File Report No.419. Prepared by National Institute of Advanced Industrial Science and Technology, p 78

    Google Scholar 

  14. Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23

    Article  CAS  Google Scholar 

  15. Zhitkovich A (2011) Chromium in drinking water: sources, metabolism, and Cancer risks. Chem Res Toxicol 24:1617–1629

    Article  CAS  Google Scholar 

  16. Lamb A, Evans G, King JR (2013) Mathematical modelling of toxicity associated with intracellular chromium reduction. Bull Math Biol 75(9):1472–1500

    Article  CAS  Google Scholar 

  17. Messer J, Reynolds M, Stoddard L, Zhitkovich A (2006) Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radic Biol Med 40:1981–1992

    Article  CAS  Google Scholar 

  18. Gibb HJ, Lees PS, Pinsky PF, Rooneym BC (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126

    Article  CAS  Google Scholar 

  19. Kim SH, Lee IC, Baek HS, Moon C, Kang SS, Bae CS, Kim SH, Shin DH, Kim J (2012) C. Pycnogenol® prevents hexavalent chromium-induced spermatotoxicity in rats. Mol Cel Toxicol 8:249–256

    Article  CAS  Google Scholar 

  20. Singh P, Chowdhuri DK (2016) Environmental presence of hexavalent but not trivalent chromium causes neurotoxicity in exposed drosophila melanogaster. Mol Neurobiol. Available at: https://doi.org/10.1007/s12035-016-9909-z

  21. U.S. Environmental Protection Agency (1998) Toxicological review of trivalent chromium. CAS No. 16065-83-1. In support of summary information on the Integrated Risk Information System (IRIS). USEPA, Washington, DC

    Google Scholar 

  22. Zhang J, Li X (1987) Chromium pollution of soil and water in Jinzhou. Chin J Prev Med 21:262–264

    CAS  Google Scholar 

  23. Yuan Y, Yang S, Zhou D, Wu F (2016) A simple Cr(VI)–S(IV)–O2 system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants. J Hazard Mater 307:294–301

    Article  CAS  Google Scholar 

  24. Ai L, He J, Wang Y, Wei C, Zhan J (2016) Aerosol-assisted in situ synthesis of iron–carbon composites for the synergistic adsorption and reduction of Cr( VI). RSC Adv 6:56108–56115

    Article  CAS  Google Scholar 

  25. Chang X, Li M, Liu Q, Liu Q, Yao J (2016) Adsorption–reduction of chromium(VI) from aqueous solution by phenol–formaldehyde resin microspheres. RSC Adv 6:46879–46888

    Article  CAS  Google Scholar 

  26. Meegoda JN, Kamolpornwijit W, Batagoda JH (2016) A detailed laboratory scale feasibility study of recovering metallic iron and chromium from chromium contaminated soils. Indian Geotech J. Available at: https://doi.org/10.1007/s40098-016-0208-4

  27. Celebi M, Yurderi M, Bulut A, Kaya M, Zahmakiran M (2016) Palladium nanoparticles supported on amine-functionalized SiO2 for the catalytic hexavalent chromium reduction. Appl Catal B Environ 180:53–64

    Article  CAS  Google Scholar 

  28. Hossini H, Rezaee A, Masoumbeigi H (2014) Optimization of chromium reduction and sludge production by bipolar electrocoagulation using response surface methodology. J Health Policy Sustain Health 1(1):1–7

    Google Scholar 

  29. Weng W, Wang M, Gong X, Wang Z, Wang D, Guo Z (2016) Direct electro-deposition of metallic chromium from K2CrO4 in the equimolar CaCl2-KCl molten salt and its reduction mechanism. Electrochim Acta 212:162–170

    Article  CAS  Google Scholar 

  30. Fan Z, Zhao Y, Zhai W, Qiu L, Li H, Hoffmann MR (2016) Facet-dependent performance of BiOBr for photocatalytic reduction of Cr( VI ). RSC Adv 6:2028–2031

    Article  CAS  Google Scholar 

  31. Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231

    Article  CAS  Google Scholar 

  32. Romanenko VI, Koren’kov VN (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 43:414–417

    Google Scholar 

  33. Salt D, Pickering I, Prince R, Gleba D, Dushenkov S, Smith R, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Technol 31:1636–1644

    Article  CAS  Google Scholar 

  34. Duarte B, Delgado M, Cac-ador I (2007) The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere 69:836–840

    Article  CAS  Google Scholar 

  35. Deng L, Wang HL, Deng NS (2006) Photoreduction of chromium(VI) in the presence of algae, Chlorella vulgaris. J Hazard Mater 138:288–292

    Article  CAS  Google Scholar 

  36. Das C, Naseera K, Ram A, Meena RM, Ramaiah N (2016) Bioremediation of tannery wastewater by a salt-tolerant strain of Chlorella vulgaris. J Appl Phycol. Available at: https://doi.org/10.1007/s10811-016-0910-8

  37. Chen Z, Song S, Wen Y (2016) Reduction of Cr (VI) into Cr (III) by organelles of Chlorella vulgaris in aqueous solution: an organelle-level attempt. Sci Total Environ 572:361–368

    Article  CAS  Google Scholar 

  38. Yen HW, Chen PW, Hsu CY, Lee L (2017) The use of autotrophic Chlorella vulgaris in chromium (VI) reduction under different reduction conditions. J Taiwan Inst Chem Eng 74:1–6

    Article  CAS  Google Scholar 

  39. Han X, Wong YS, Wong MH, Tam NFY (2007) Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J Hazard Mater 146:65–72

    Article  CAS  Google Scholar 

  40. Sibi G (2016) Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy Environ 1:172–177

    Article  Google Scholar 

  41. Xie Y, Li H, Wang X, Ng IS, Lu Y, Jing K (2014) Kinetic simulating of Cr(VI) removal by the waste Chlorella vulgaris biomass. J Taiwan Inst Chem Eng 45:1773–1782

    Article  CAS  Google Scholar 

  42. Yang L, Chen JP (2008) Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresour Technol 99:297–307

    Article  CAS  Google Scholar 

  43. de Souza FB, Brandão HDL, Hackbarth FV, de Souza AAU, Boaventura RAR, de Souza SMAGU, Vilar VJP (2016) Marine macro-alga Sargassum cymosum as electron donor for hexavalent chromium reduction to trivalent state in aqueous solutions. Chem Eng J 283:903–910

    Article  Google Scholar 

  44. Bertagnolli C, da Silva MGC, Guibal E (2014) Chromium biosorption using the residue of alginate extraction from Sargassum filipendula. Chem Eng J 237:362–371

    Article  CAS  Google Scholar 

  45. Hackbarth FV, Maass D, de Souza AAU, Vilar VJP, de Souza SMAGU (2016) Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chem Eng J 290:477–489

    Article  CAS  Google Scholar 

  46. Jayakumar R, Rajasimman M, Karthikeyan C (2014) Sorption of hexavalent chromium from aqueous solution using marine green algae Halimeda gracilis: optimization, equilibrium, kinetic, thermodynamic and desorption studies. J Environ Chem Eng 2:1261–1274

    Article  CAS  Google Scholar 

  47. Basha S, Murthy ZVP, Jha B (2008) Biosorption of hexavalent chromium by chemically modified seaweed, Cystoseira indica. Chem Eng J 137:480–488

    Article  CAS  Google Scholar 

  48. Dittert IM, Brandão HL, Pina F, da Silva EAB et al (2014) Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae. Chem Eng J 237:443–454

    Article  CAS  Google Scholar 

  49. Gupta V, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402

    Article  CAS  Google Scholar 

  50. Zhang H, Tang Y, Cai D, Liu X et al (2010) Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: equilibrium and kinetic studies. J Hazard Mater 181:801–808

    Article  CAS  Google Scholar 

  51. Headlam HA, Lay PA (2016) Spectroscopic characterization of genotoxic chromium (V) peptide complexes: Oxidation of Chromium (III) triglycine, tetraglycine and pentaglycine complexes. J Inorg Biochem 162:227–237

    Google Scholar 

  52. An Z, Zhang H, Wen Q, Chen Z, Du M (2014) Desalination combined with hexavalent chromium reduction in a microbial desalination cell. Desalination 354:181–188

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. (Dr.) M. R. Nayak, President, SOA (Deemed to be University), for providing the infrastructures and encouragement throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, D., Sukla, L.B. (2019). Bioreduction of Hexavalent Chromium Using Microalgae. In: Sukla, L., Subudhi, E., Pradhan, D. (eds) The Role of Microalgae in Wastewater Treatment . Springer, Singapore. https://doi.org/10.1007/978-981-13-1586-2_5

Download citation

Publish with us

Policies and ethics