Advertisement

Genetic Fingerprinting for Human Diseases: Applications and Implications

  • Inusha Panigrahi
Chapter

Abstract

DNA fingerprinting traditionally refers to the identification of individuals from blood and/or tissue samples for forensic purposes. But genetic fingerprinting can also include characterization of the genetic basis of human diseases, especially the inherited disorders. Some of the variants or haplotypes identified may run in families and thereby also have pathological or phenotypic connotations. The DNA sequencing technologies have evolved over the years, and nowadays, high-throughput techniques and applications are available with increased automation. Thus, genetic fingerprinting can have various connotations in relation to human diseases. The genetic testing done would depend on the clinical situation or phenotype, and what we are looking for in a specific patient or individual. Pretest and posttest counseling are important to facilitate decision-making.

Keywords

Genetic fingerprinting Human diseases Inherited disorders Methylation Mutations Microarray NGS 

Notes

Acknowledgments

Thanks to all families whose clinical details have been discussed as cases in this write up. Appropriate consent was taken for publication as per ethical guidelines from parents/guardian. Also, thanks to the individuals/labs for the molecular testing in the patients.

References

  1. 1.
    Roewer L (2013) DNA fingerprinting in forensics: past, present, and future. Investig Genet 4:22.  https://doi.org/10.1186/2041-2223-4-22CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mehrab-Mohseni M, Tabatabaei-Malazy O, Hasani-Ranjbar S, Amiri P, Kouroshnia A, Bazzaz JT, Farahani-Shrhabi M, Larijani B, Amoli MM (2011) Endothelial nitric oxide synthase VNTR (intron 4 a/b) polymorphism association with type 2 diabetes and its chronic complications. Diabetes Res Clin Pract 91(3):348–352CrossRefGoogle Scholar
  3. 3.
    Dittwald P, Gambin T, Szafranski P, Li J, Amato S, Divon MY et al (2013) NAHR-mediated copy number variants in a clinical population: mechanistic insights into both genomic disorders and mendelizing traits. Genome Res 23(9):1395–1409CrossRefGoogle Scholar
  4. 4.
    Goidts V, Armengol L, Schempp W, Conroy J, Nowak N, Müller S, Cooper DN, Estivill X, Enard W, Szamalek JM et al (2006) Identification of large scale human specific copy number differences by inter species array comparative genomic hybridization. Hum Genet 119(1–2):185–198CrossRefGoogle Scholar
  5. 5.
    Butler MG (2009) Genomic imprinting disorders in humans. J Assist Reprod Genet 26:477486CrossRefGoogle Scholar
  6. 6.
    Poole RL, Docherty LE, Al Sayegh A, Caliebe A, Turner C, Baple E, Wakeling E, Harrison L, Lehmann A, Temple IK, Mackay DJ, International Clinical Imprinting Consortium (2013) Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders. Am J Med Genet A 161A(9):2174–2182CrossRefGoogle Scholar
  7. 7.
    Mobasherizadeh S, Shojaei H, Havaei SA, Mostafavizadeh K, Davoodabadi F, Khorvash F, Ataei B, Daei-Naser A (2016) Application of the random amplified polymorphic DNA (RAPD) fingerprinting to analyze genetic variation in community associated-methicillin resistant staphylococcus aureus (CA-MRSA) Isolates in Iran. Glob J Health Sci 8(8):53822.  https://doi.org/10.5539/gjhs.v8n8p185CrossRefPubMedGoogle Scholar
  8. 8.
    Toval F, Guzmán-Marte A, Madriz V, Somogyi T, Rodríguez C, García F (2015) Predominance of carbapenem-resistant Pseudomonas aeruginosa isolates carrying blaIMP and blaVIM metallo-β-lactamases in a major hospital in Costa Rica. J Med Microbiol 64(Pt 1):37–43CrossRefGoogle Scholar
  9. 9.
    Lixandru BE, Cotar AI, Straut M, Usein CR, Cristea D, Ciontea S et al (2015) Carbapenemase-producing Klebsiella pneumoniae in Romania: a Six-Month Survey. PLoS One 10(11):e0143214CrossRefGoogle Scholar
  10. 10.
    Salimizand H, Menbari S, Ramazanzadeh R, Khonsha M, Saleh VM (2016) DNA fingerprinting and antimicrobial susceptibility pattern of clinical and environmental Acinetobacter baumannii isolates: a multicentre study. J Chemother 28(4):277–283CrossRefGoogle Scholar
  11. 11.
    Sakthivel S, Zatkova A, Nemethova M, Surovy M, Kadasi L, Saravanan MP (2014) Mutation screening of HGD gene identified a novel alkaptonuria mutation with significant founder effect and high prevalence. Ann Hum Genet 78(3):155–164CrossRefGoogle Scholar
  12. 12.
    Ankala A, Kohn JN, Dastur R, Gaitonde P, Khadilkar SV, Hegde MR (2013) Ancestral founder mutations in calpain-3 gene in the Indian Agarwal community: historical, clinical and molec ular perspective. Muscle Nerve 47(6):931–937CrossRefGoogle Scholar
  13. 13.
    Bijarnia-Mahay S, Movva S, Gupta N, Sharma D, Puri RD, Kotecha U, Saxena R, Kabra M, Mohan N, Verma IC (2015) Molecular diagnosis of hereditary fructose intolerance: founder mutation in a community from India. JIMD Rep 19:85–93CrossRefGoogle Scholar
  14. 14.
    Garewal G, Das R, Ahluwalia J, Marwaha RK, Varma S (2005) Nucleotide -88 (C-T) promoter mutation is a common beta-thalassemia mutation in Jat Sikhs of Punjab. India Am J Hematol 79(4):252–256CrossRefGoogle Scholar
  15. 15.
    Panigrahi I, Kalra J, Goyad P, Khetarpal P, Munshi A (2016) Mutational analysis in Gaucher disease: implications in genetic counseling and management. J Genet Disor Genet Rep 5(2).  https://doi.org/10.4172/2327-5790.1000132
  16. 16.
    Torres-Serrant M, Ramirez SI, Cadilla CL, Ramos-Valencia G, Santiago-Borrero PJ (2010) Newborn screening for Hermansky-Pudlak syndrome type 3 in Puerto Rico. J Pediatr Hematol Oncol 32:448–453CrossRefGoogle Scholar
  17. 17.
    Panigrahi I, Suthar R, Rawat A, Behera B (2015) Seizure as the presenting manifestation in Griscelli syndrome type 2. Pediatr Neurol. 52(5):535–538CrossRefGoogle Scholar
  18. 18.
    Van der Woerd WL, van Mil SW, Stapelbroek JM, Klomp LW, van der Graaf SF, Houwen RH (2010) Familial cholestasis: progressive familial intrahepatic cholestasis, benign recurrent intrahepatic cholestasis and intrahepatic cholestasis of pregnancy. Best Pract Res Clin Gastroenterol 24(5):541–553CrossRefGoogle Scholar
  19. 19.
    Tallila J, Jakkula E, Peltonen L, Salonen R, Kestilä M (2008) Identification of CC2D2A as a Meckel syndrome gene adds an important piece to the ciliopathy puzzle. Am J Hum Genet 82:1361–1367CrossRefGoogle Scholar
  20. 20.
    Young ID, Rickett AB, Clarke M (1985) High incidence of Meckel syndrome in Gujarati Indians. J Med Genet 22:301–304CrossRefGoogle Scholar
  21. 21.
    Engels H, Wohlleber E, Zink A, Hoyer J, Ludwig KU, Brockschmidt FF et al (2009) A novel microdeletion syndrome involving 5q14.3-q15: clinical and molecular cytogenetic characterization of three patients. Eur J Hum Genet 17(12):1592–1599CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Inusha Panigrahi
    • 1
  1. 1.Genetic and Metabolic Unit, Department of PediatricsAdvanced Pediatric Centre (APC), Post Graduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia

Personalised recommendations