Microbial Forensics: Beyond a Fascination

  • Vijay Nema


Microbiology has seen a great transition from culture-based identification of microbes using various biochemical and microscopic observations to identify and functionally characterize the microbes by just collecting the DNA and sequencing it. This advancement has not only moved in and around microbiology but has found its applications in fields which were earlier considered to be the remote ones. Forensics is one such field, where tracing the leftover evidence on a crime scene can lead to the identification and prosecution of the culprit. When leftover microbes in the biological material or objects used by the culprit or the person in question are used to correlate the identity of the individual, it takes us to the new field of science—“microbial forensics.” Technological advances in the field of forensics, molecular biology, and microbiology have all helped to refine the techniques of collecting and processing of the samples for microbiological identification using DNA-based methods followed by its inference in the form of evidence. Studies have supported the assumption that skin or surface microflora of an individual is somewhat related with the microflora found on the objects used by that individual and efforts are ongoing to see if this is found consistently in various surroundings and with different individuals. Once established, this technique would facilitate accurate identification and differentiation of an individual or suspect to guide investigations along with conventional evidence. Legal investigations are not only the field where microbial forensic could help. Agriculture, defense, public health, tourism, etc. are the fields wherein microbial forensics with different names based on the fields are helping out and have potential to further support other fields.


Microbial forensics Next-generation sequencing Metagenomics Microbiome Culture-independent techniques DNA 


  1. 1.
    Herschel WJ (1916) The origin of fingerprinting. Humphrey Milford Oxford University Press, LondonGoogle Scholar
  2. 2.
    Dixson AF, Hastie N, Patel I, Jeffreys AJ (1988) DNA ‘fingerprinting’ of captive family groups of common marmosets (Callithrix jacchus). Folia Primatol (Basel) 51(1):52–55CrossRefGoogle Scholar
  3. 3.
    Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318(6046):577–579CrossRefGoogle Scholar
  4. 4.
    Helminen P, Ehnholm C, Lokki ML, Jeffreys A, Peltonen L (1988) Application of DNA “fingerprints” to paternity determinations. Lancet 1(8585):574–576CrossRefGoogle Scholar
  5. 5.
    Jeffreys AJ (2013) The man behind the DNA fingerprints: an interview with professor sir Alec Jeffreys. Investig Genet 4:21CrossRefGoogle Scholar
  6. 6.
    Wetton JH, Carter RE, Parkin DT, Walters D (1987) Demographic study of a wild house sparrow population by DNA fingerprinting. Nature 327(6118):147–149CrossRefGoogle Scholar
  7. 7.
    Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R (2010) Forensic identification using skin bacterial communities. Proc Natl Acad Sci U S A 107(14):6477–6481CrossRefGoogle Scholar
  8. 8.
    Goga H (2012) Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners. Int J Legal Med 126(5):815–823CrossRefGoogle Scholar
  9. 9.
    Lax S, Hampton-Marcell JT, Gibbons SM, Colares GB, Smith D, Eisen JA, Gilbert JA (2015) Forensic analysis of the microbiome of phones and shoes. Microbiome 12(3):21CrossRefGoogle Scholar
  10. 10.
    Fredricks DN (2001) Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc 6:167–169CrossRefGoogle Scholar
  11. 11.
    Morell V (1997-05-02). Microbiology’s scarred revolutionary. Science 276(5313):699–702CrossRefGoogle Scholar
  12. 12.
    Woese CR, Fox GE (1977-11-01) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74(11): 5088–5090CrossRefGoogle Scholar
  13. 13.
    Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11(3):245–251CrossRefGoogle Scholar
  14. 14.
    Woese CR, Kandler O, Wheelis M (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579CrossRefGoogle Scholar
  15. 15.
    Lee SY, Woo SK, Choi GW, Hong HJ, Eom YB (2015) Microbial forensic analysis of bacterial fingerprint by sequence comparison of 16S rRNA gene. J Forensic Res 6:297Google Scholar
  16. 16.
    Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G et al (2013) Cohabiting family members share microbiota with one another and with their dogs. elife 2:e00458CrossRefGoogle Scholar
  17. 17.
    Leake SL (2013) Is human DNA enough?-potential for bacterial DNA. Front Genet 4:282CrossRefGoogle Scholar
  18. 18.
    Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 2014;345(6200):1048–1052CrossRefGoogle Scholar
  19. 19.
    Meadow JF, Altrichter AE, Green JL (2014) Mobile phones carry the personal microbiome of their owners. Peer J 2:e447. Scholar
  20. 20.
    Metcalf JL, Wegener Parfey L, Gonzalez A, Lauber CL, Knights D, Ackermann G et al (2013) A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. elife 2:e01104CrossRefGoogle Scholar
  21. 21.
    Schmedes SE, Sajantila A, Budowle B (2016) Expansion of microbial forensics. J Clin Microbiol 54(8):1964–1974CrossRefGoogle Scholar
  22. 22.
    Taylor LH, Latham SM, Woolhouse MEJ (2001) Risk factors for human disease emergence. Philos Trans R Soc Lond Ser B Biol Sci 356:983–989CrossRefGoogle Scholar
  23. 23.
    Allard MW, Strain E, Melka D, Bunning K, Musser SM, Brown EW, Timme R (2016) Practical value of food pathogen traceability through building a whole-genome sequencing network and database. J Clin Microbiol 54(8):1975–1983CrossRefGoogle Scholar
  24. 24.
    Chen Y, Luo Y, Pettengill J, Timme R, Melka D, Doyle M, Jackson A, Parish M, Hammack TS, Allard MW, Brown EW, Strain EA (2017) Singleton sequence type 382, an emerging clonal group of Listeria monocytogenes associated with three multistate outbreaks linked to contaminated stone fruit, caramel apples, and leafy green salad. J Clin Microbiol 55:931–941CrossRefGoogle Scholar
  25. 25.
    Nema V, Agrawal R, Kamboj DV, Goel AK, Singh L. Isolation and characterization of heat resistant enterotoxigenic Staphylococcus aureus from a food poisoning outbreak in Indian subcontinent. Int J Food Microbiol 2007 10;117(1):29–35CrossRefGoogle Scholar
  26. 26.
    Hoffmann M, Luo Y, Monday SR, Gonzales-Escalona N, Ottensen A, Muruvanda T, Wang C, Kastanis G, Keys C, Janies D, Senturk I, Catalyurek UV, Wang H, Hammack TS, Wolfgang WJ, Schoonmaker-Bopp D, Chu A, Myers R, Haendiges J, Evans P, Meng J, Strain E, Allard MW, Brown EW (2016) Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. J Infect Dis 213:502–508CrossRefGoogle Scholar
  27. 27.
    Latxague E, Sache I, Pinon J, Andrivon D, Barbier M, Suffert F (2007) A methodology for assessing the risk posed by the deliberate and harmful use of plant pathogens in Europe. EPPO Bull 37:427–435CrossRefGoogle Scholar
  28. 28.
    Suffert F. (2017) Characterization of the Threat Resulting from Plant Pathogen Use as Anti-crop Bioweapons: An EU Perspective on Agroterrorism. In: Gullino M., Stack J., Fletcher J., Mumford J. (eds) Practical Tools for Plant and Food Biosecurity. Plant Pathology in the 21st Century, vol 8. Springer, ChamCrossRefGoogle Scholar
  29. 29.
    Van Doren JM, Neil KP, Parish M, Gieraltowski L, Gould LH, Gombas KL (2013 Dec) Foodborne illness outbreaks from microbial contaminants in spices, 1973-2010. Food Microbiol 36(2):456–464CrossRefGoogle Scholar
  30. 30.
    Hu L, Ma LM, Zheng S, He X, Wang H, Brown EW, Hammack TS, Zhang G. Evaluation of 3M Molecular Detection System and ANSR Pathogen Detection System for rapid detection of Salmonella from egg products. Poult Sci. 2017; 96(5):1410–1418Google Scholar
  31. 31.
    Budowle B, Connell ND, Bielecka-Oder A, Colwell RR, Corbett CR, Fletcher J, Forsman M, Kadavy DR, Markotic A, Morse SA, Murch RS, Sajantila A, Schmedes SE, Ternus KL, Turner SD, Minot S (2014) Validation of high throughput sequencing and microbial forensics applications. Investig Genet 30(5):9CrossRefGoogle Scholar
  32. 32.
    Murch RS (2014) Designing an effective microbial forensics program for law enforcement and national security purposes. Arch Immunol Ther Exp 62(3):179–185CrossRefGoogle Scholar
  33. 33.
    Keim P, Budowle B, Ravel J. 2011. Microbial forensic investigation of the anthrax-letter attacks, Budowle B, Schutzer SE, Breeze RG, Keim PS, Morse SA, Microbial forensics, 2nd. Academic, Amsterdam, 15–25CrossRefGoogle Scholar
  34. 34.
    National Research Council (2011) Review of the scientific approaches used during the FBI’s investigation of the 2001 anthrax letters. The National Academies Press, Washington, DCGoogle Scholar
  35. 35.
    Price EP, Seymour ML, Sarovich DS, Latham J, Wolken SR, Mason J, Vincent G, Drees KP, Beckstrom-Sternberg SM, Phillippy AM, Koren S, Okinaka RT, Chung W-K, Schupp JM, Wagner DM, Vipond R, Foster JT, Bergman NH, Burans J, Pearson T, Brooks T, Keim P (2012) Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe. Emerg Infect Dis 18:1307–1313CrossRefGoogle Scholar
  36. 36.
    Ou CY, Ciesielski CA, Myers G, Bandea CI, Luo CC, Korber BT, Mullins JI, Schochetman G, Berkelman RL, Economou AN (1992) Molecular epidemiology of HIV transmission in a dental practice. Science 256:1165–1171CrossRefGoogle Scholar
  37. 37.
    Schloissnig S et al (2013) Genomic variation landscape of the human gut microbiome. Nature 493(7430):45–50CrossRefGoogle Scholar
  38. 38.
    Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, Jalloh S, Momoh M, Fullah M, Dudas G, Wohl S, Moses LM, Yozwiak NL, Winnicki S, Matranga CB, Malboeuf CM, Qu J, Gladden AD, Schaffner SF, Yang X, Jiang P-P, Nekoui M, Colubri A, Coomber MR, Fonnie M, Moigboi A, Gbakie M, Kamara FK, Tucker V, Konuwa E, Saffa S, Sellu J, Jalloh AA, Kovoma A, Koninga J, Mustapha I, Kargbo K, Foday M, Yillah M, Kanneh F, Robert W, Massally JLB, Chapman SB, Bochicchio J, Murphy C, Nusbaum C, Young S, Birren BW, Grant DS, Scheiffelin JS, et al. 2014. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345: 1369–1372CrossRefGoogle Scholar
  39. 39.
    Javan GT, Finley SJ, Abidin Z, Mulle JG (2016a) The Thanatomicrobiome: a missing piece of the microbial puzzle of death. Front Microbiol 7:225CrossRefGoogle Scholar
  40. 40.
    Javan GT, Finley SJ, Can I, Wilkinson JE, Hanson JD, Tarone AM (2016b) Human Thanatomicrobiome succession and time since death. Sci Rep 6Google Scholar
  41. 41.
    Faith JJ et al (2013) The long-term stability of the human gut microbiota. Science 341(6141):1237439CrossRefGoogle Scholar
  42. 42.
    González-Candelas F, Bracho MA, Wróbel B, Moya A (2013) Molecular evolution in court: analysis of a large hepatitis C virus outbreak from an evolving source. BMC Biol 11:76CrossRefGoogle Scholar
  43. 43.
    Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJ, Huttenhower C (2015) Identifying personal microbiomes using metagenomic codes. Proc Natl Acad Sci U S A 112(22):E2930–E2938CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vijay Nema
    • 1
  1. 1.Division of Molecular BiologyNational AIDS Research InstitutePuneIndia

Personalised recommendations