Advertisement

Applications of the Mitochondrion in Forensic DNA Typing

  • Ranyelle Reid
Chapter

Abstract

Prior to the coronary stent implantation (CSI) era, a typical biology course would introduce the mitochondrion simply as the energy-producing organelle of the cell. Little, if any, discussion was provided about the mitochondrial genome and its participation in human molecular inheritance and evolutionary biology. Now that human identification, via DNA typing, is the driving force behind several forms of television entertainment, the traditional role of the mitochondrion has taken a backseat. In this chapter you will learn how and why mitochondria have been targeted by scientists for use in forensic analysis, human molecular genetics, evolutionary biology, human migration studies, and recovery operations in identifying deceased persons, both ancient and modern. You will also learn how mitochondrial DNA (mtDNA) has provided forensic scientists with a valuable tool for determining the source of DNA recovered from damaged, degraded, or very small biological samples. This chapter explains how mtDNA analysis offers a unique maternal ancestral view of an individual’s molecular pin code, through examination of a very specific region of the mitochondrial genome. This chapter will also evaluate both the pros and the cons of mtDNA utility in forensic analysis. Though data have proven increased utility of mtDNA in both historical and modern cases, it is still discounted by many and considered an unreliable forensic tool. An ongoing source of controversy in mtDNA analysis is centered on both data acquisition and data analysis (i.e., how differences in mtDNA sequences are reported). Before the forensic community can approve a DNA typing or classification technique, extensive research on its accuracy, reliability, and discriminatory power must be validated.

Keywords

DNA typing Mitochondria Sequencing Forensics Matrilineal Ancestor 

References

  1. 1.
    Allard MW, Polanskey D, Wilson MR, Monson KL, Budowle B (2006) Evaluation of variation in control region sequences for Hispanic individuals in the SWGDAM mtDNA data set. J Forensic Sci 51(3):566–573CrossRefGoogle Scholar
  2. 2.
    Anderson TD, Ross JP, Roby RK, Lee DA, Holland MM (1999) A validation study for the extraction and analysis of DNA from human nail material and its application to forensic casework. J Forensic Sci 44(5):1053–1056CrossRefGoogle Scholar
  3. 3.
    Arora KK, Pedersen PL (1988) Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem 263:17422–17428PubMedGoogle Scholar
  4. 4.
    Bär W et al (2000) DNA Commission of the International Society for forensic genetics: guidelines for mitochondrial DNA typing. Int J Legal Med 113(4):193–196CrossRefGoogle Scholar
  5. 5.
    Brandt M (2003) Electron transport and oxidative phosphorylation. Rose-Hulman Institute of Technology. pp. 74–81. www.rose-hulman.edu/~brandt/Chem330/.Google Scholar
  6. 6.
    Brenner CH, Weir BS (2003) Issues and strategies in the DNA identification of world trade center victims. Theor Popul Biol 63(3):173–178CrossRefGoogle Scholar
  7. 7.
    Černý V, Pereira L, Musilová E, Kujanová M, Vašíková A, Blasi P et al (2011) Genetic structure of pastoral and farmer populations in the African Sahel. Mol Biol Evol 28(9):2491–2500CrossRefGoogle Scholar
  8. 8.
    Cressey D (2013) Tusk tracking will tackle illegal trade: forensic testing of seized ivory could track down poachers. Nature 494(7438):411–413CrossRefGoogle Scholar
  9. 9.
    Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, Tanonaka K (2009) Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci 111:33–43CrossRefGoogle Scholar
  10. 10.
    Montano E (2012) Improvements to the forensic analysis of mitochondrial DNA typing. In: Honors Scholar Theses, vol 228 http://digitalcommons.uconn.edu/srhonors_theses/228
  11. 11.
    Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, Inc, Sutherland, pp 25–41Google Scholar
  12. 12.
    Gürkan H, Özal SA, Esgin H (2012) Results of mitochondrial DNA sequence analysis in patients with clinically diagnosed Leber’s hereditary optic neuropathy. Balkan Med J 29:306–309PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hameed IH, Jebor MA, Kareem MA (2015) Forensic analysis of mitochondrial DNA hypervariable region HVII (encompassing nucleotide positions 37 to 340) and HVIII (encompassing nucleotide positions 438-574) and evaluation of the importance of these variable positions for forensic genetic purposes. Afr J Biotechnol 14(5):365–374CrossRefGoogle Scholar
  14. 14.
    Ingman M, Kaessmann H, Pääbo S, Gyllensten U (2000) Mitochondrial genome variation and the origin of modern humans. Nature 408:708–713CrossRefGoogle Scholar
  15. 15.
    Just RS, Irwin JA, Parson W (2015) Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing. Forensic Sci Int Genet 18:131–139CrossRefGoogle Scholar
  16. 16.
    Kavlick MF, Lawrence HS, Merritt RT, Fisher C, Isenberg A, Robertson JM, Budowle B (2011) Quantification of human mitochondrial DNA using synthesized DNA standards. J Forensic Sci 56(6):1457–1463CrossRefGoogle Scholar
  17. 17.
    Keim P, Pearson T, Okinaka R (2008) Microbial forensics: DNA fingerprinting of Bacillus anthracis (anthrax). Anal Chem 80:4791–4799CrossRefGoogle Scholar
  18. 18.
    Kim W, Yoo TK, Shin DJ, Rho HW, Jin HJ, Kim ET, Bae YS (2008) Mitochondrial DNA haplogroup analysis reveals no association between the common genetic lineages and prostate cancer in the Korean population. PLoS One 3:e2211CrossRefGoogle Scholar
  19. 19.
    Kosoy R, Nassir R, Tian C, White PA, Butler LM, Silva G et al (2009) Ancestry informative marker sets for determining continental origin and admixture proportions in common populations in America. Hum Mutat 30(1):69–78CrossRefGoogle Scholar
  20. 20.
    Kremer K, Arnold C, Cataldi A, Gutiérrez MC, Haas WH, Panaiotov S, Skuce RA, Supply P, van der Zanden AGM, van Soolingen D (2005) Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. J Clin Microbiol 43:5628–5638CrossRefGoogle Scholar
  21. 21.
    Laurin JE (2012) Remapping the path forward: toward a systemic view of forensic science reform and oversight. Tex L Rev 91:1051Google Scholar
  22. 22.
    Malyarchuk BA, Rogozin IB (2004) Mutagenesis by transient misalignment in the human mitochondrial DNA control region. Ann Hum Genet 68(4):324–339CrossRefGoogle Scholar
  23. 23.
    Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Phil Trans R Soc B 370:20140330.  https://doi.org/10.1098/rstb.2014.0330 CrossRefPubMedGoogle Scholar
  24. 24.
    McBride H, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16(15):551–560.  https://doi.org/10.1016/j.cub.2006.06.054 CrossRefGoogle Scholar
  25. 25.
    Melton T, Dimick G, Higgins B, Lindstrom L, Nelson K (2005) Forensic mitochondrial DNA analysis of 691 casework hairs. J Forensic Sci 50(1):JFS2004230–JFS2004238CrossRefGoogle Scholar
  26. 26.
    Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P (2003) Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res 31:e61CrossRefGoogle Scholar
  27. 27.
    Montemurro C, Vadrevu S, Gurlo T, Butler AE, Vongbunyong KE, Petcherski A, Shirihai OS, Satin LS, Braas D, Butler PC, Tudzarova S (2017) Cell cycle-related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line. Cell Cycle 18:1–14Google Scholar
  28. 28.
    Nemazee D (2000) Receptor selection in B and T lymphocytes. Annu Rev Immunol 18:19.  https://doi.org/10.1146/annurev.immunol.18.1.19 CrossRefPubMedGoogle Scholar
  29. 29.
    Okamoto K, Shaw J (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev 39:503–506CrossRefGoogle Scholar
  30. 30.
    Pai CY, Chou SL, Tang TK, Wei YH, Yang CH (1997) Haplotyping of mitochondrial DNA in the D-loop region by PCR: forensic application. J Formosan Assoc 96:73–82Google Scholar
  31. 31.
    Parson W, Gusmao L, Hares DR, Irwin JA, Mayr WR, Morling N, Pokorak E, Prinz M, Salas A, Schneider PM, Parsons TJ (2014) DNA Commission of the International Society for forensic genetics: revised and extended guidelines for mitochondrial DNA typing. Forensic Sci Int Genet 13:134–142 File DOI Link ISSN 1872-4973CrossRefGoogle Scholar
  32. 32.
    Payne BAI et al (2013) Universal heteroplasmy of human mitochondrial DNA. Hum Mol Genet 22(2):384–390CrossRefGoogle Scholar
  33. 33.
    Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312CrossRefGoogle Scholar
  34. 34.
    Quintáns B, Alvarez-Iglesias V, Salas A, Phillips C, Lareu MV, Carracedo A (2004) Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing. Forensic Sci Int 140(2):251–257CrossRefGoogle Scholar
  35. 35.
    Rando JC, Pinto F, Gonzalez AM, Hernandez M, Larruga JM, Cabrera VM, Bandelt HJ (1998) Mitochondrial DNA analysis of northwest African populations reveals genetic exchanges with European, near-eastern, and sub-Saharan populations. Ann Hum Genet 62(6):531–550CrossRefGoogle Scholar
  36. 36.
    Reid RS (2012) Evaluation of Mitochondrial DNA Typing in a Forensically Relevant Population. Retrieved May 19, 2017, from http://digitalcommons.uconn.edu/dissertations/18/
  37. 37.
    Relethford JH (2001) Ancient DNA and the origin of modern humans. Proc Natl Acad Sci U S A 98:390–391CrossRefGoogle Scholar
  38. 38.
    Schlacht A, Herman EK, Klute MJ, Field MC, Dacks JB (2014) Missing pieces of an ancient puzzle: evolution of the eukaryotic membrane-trafficking system. Cold Spring Harb Perspect Biol 6:a016048.  https://doi.org/10.1101/cshperspect.a016048 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347(8):576–580CrossRefGoogle Scholar
  40. 40.
    Soni N (2015) New science, old convictions - Texas senate bill 344: identifying further necessary reform in forensic science. J Law Biosci 2:149–157CrossRefGoogle Scholar
  41. 41.
    Stewart JB, Chinnery PF (2015) The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet 16:530–542CrossRefGoogle Scholar
  42. 42.
    Walton R (2006) Cold case squads. Pract Asp Crim Forensic Invest Cold Case Homicides.  https://doi.org/10.1201/9781420003949.ch11 Google Scholar
  43. 43.
    Westerlund JF, Fairbanks DJ (2010) Gregor Mendel’s classic paper and the nature of science in genetics courses. Hereditas 147:293–303CrossRefGoogle Scholar
  44. 44.
    Ziegler DV, Wiley CD, Velarde MC (2014) Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Anat Soc 14(1)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ranyelle Reid
    • 1
  1. 1.BioResearch Molecular DevicesLLCSan JoseUSA

Personalised recommendations