Advertisement

Probiotic Lactobacilli, Infection, and Immunomodulation

  • Sumanpreet Kaur
  • Preeti Sharma
  • Sukhraj Kaur
Chapter

Abstract

Immunomodulatory agents are potentially believed to play important roles in infectious, allergic, and autoimmune diseases. The probiotic bacteria such as lactobacilli have immunomodulatory properties and are generally regarded as safe. Thus, they can be used as adjuvants for the treatment of infectious and allergic/autoimmune diseases. The immunomodulatory properties of five lactobacilli species such as Lactobacillus casei, L. rhamnosus, L. paracasei, L. gasseri, and L. acidophilus have been well studied. This book chapter summarizes the various studies which have reported immunomodulation by Lactobacillus species. Further, the immunomodulatory molecules produced by lactobacilli have been discussed. The immunomodulatory effects of Lactobacillus species are strictly strain-specific and in some cases yielded contrasting results in different hosts. Thus, use of lactobacilli as immunomodulatory agent for therapeutic use should be strictly backed by human clinical trials. Further, some of the immunomodulatory molecules are known to play role(s) in immunopathogenesis of allergic diseases. Thus probiotic lactobacilli species to be used as therapeutic agents should be screened for their ability to secrete harmful metabolites.

Keywords

Allergic disease Cytokine GABA Immunomodulatory Lactobacilli SCFA 

Notes

Acknowledgment

This work was supported by research grant (grant number: 42-478/2013 SR) sponsored by the University Grants Commission (UGC), New Delhi, India. Mrs. Sumanpreet Kaur is thankful to University of Potential for Excellence scheme of UGC for the fellowship. Ms. Preeti Sharma is thankful to UGC for the fellowship.

References

  1. Amdekar S, Dwivedi D, Roy P, Kushwah S, Singh V (2010) Probiotics: multifarious oral vaccine against infectious traumas. FEMS Immunol Med Microbiol 58:299–306CrossRefGoogle Scholar
  2. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature 504:451–455CrossRefGoogle Scholar
  3. Baken KA, Ezendam J, Gremmer ER, Klerk R, Pennings JA, Matthee B et al (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 112:8–18CrossRefGoogle Scholar
  4. Balejko E, Bogacka A, Balejko J, Kucharska E (2015) Immunomodulation effect of metabolites from Lactobacillus rhamnosus GG on interleukins release in vitro. J Food Nutr Res 3:297–302Google Scholar
  5. Barrett E, Ross RP, O'Toole PW, Fitzgerald GF, Stanton C (2012) γ-aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113:411–417CrossRefGoogle Scholar
  6. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A (2012) Probiotics mechanisms of action. Ann Nutr Metab 61:160–174CrossRefGoogle Scholar
  7. Bevins CL, Salzman NH (2012) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9:356–368CrossRefGoogle Scholar
  8. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW et al (2009) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci 107:2580–2585CrossRefGoogle Scholar
  9. Blackwell B (1963) Hypertensive crisis due to monoamine-oxidase inhibitors. Lancet 2:849–850CrossRefGoogle Scholar
  10. Borruel N, Carol M, Casellas F, Antolin M, de Lara F, Espin E et al (2002) Increased mucosal tumour necrosis factor a production in Crohn’s disease can be downregulated ex vivo by probiotic bacteria. Gut 51:659–664CrossRefGoogle Scholar
  11. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci 111:2247–2252CrossRefGoogle Scholar
  12. Chen YS, Jan RL, Lin YL, Chen HH, Wang JY (2010) Randomized placebo-controlled trial of Lactobacillus on asthmatic children with allergic rhinitis. Pediatr Pulmonol 45:1111–1120CrossRefGoogle Scholar
  13. Ciszek-Lenda M, Nowak B, Srottek M, Gamian A, Marcinkiewicz J (2011) Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37: effects on the production of inflammatory mediators by mouse macrophages. Int J Exp Pathol 92:382–391CrossRefGoogle Scholar
  14. D’Arienzo R, Bozzella G, Rossi M, De Bellis P, Lavermicocca P, Sisto A (2011) Distinct immunomodulatory properties of Lactobacillus paracasei strains. J Appl Microbiol 111:1482–1491CrossRefGoogle Scholar
  15. Dhakal R, Bajpai VK, Baek KH (2012) Production of GABA (γ – aminobutyric acid) by microorganisms: a review. Braz J Microbiol 43:1230–1241CrossRefGoogle Scholar
  16. Dong H, Rowland I, Tuohy KM, Thomasand LV, Yaqoob P (2010) Selective effects of Lactobacillus casei Shirota on T cell activation, natural killer cell activity and cytokine production. Clin Exp Immunol 161:378–388PubMedPubMedCentralGoogle Scholar
  17. Doron S, Snydman DR, Gorbach SL (2005) Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin N Am 34:483–498CrossRefGoogle Scholar
  18. Evrard B, Coudeyras S, Dosgilbert A, Charbonnel N, Alamé J, Tridon A et al (2011) Dose-dependent immunomodulation of human dendritic cells by the probiotic Lactobacillus rhamnosus Lcr35. PLoS One 6:1–12CrossRefGoogle Scholar
  19. FAO/WHO (2001) Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Report of a joint Food Agricultural Organisation/WHO expert consultation, CordobaGoogle Scholar
  20. Finegold SM, Sutter VL, Mathisen GE (1983) Normal indigenous intestinal flora. In: Hentges DJ (ed) Human intestinal microbiota in health and disease. Academic, New York, pp 3–31CrossRefGoogle Scholar
  21. Fölster-Holst R, Müller F, Schnopp N, Abeck D, Kreiselmaier I, Lenz T et al (2006) Prospective, randomized controlled trial on Lactobacillus rhamnosus in infants with moderate to severe atopic dermatitis. Br J Dermatol 155:1256–1261CrossRefGoogle Scholar
  22. Fong FLY, Kirjavainen P, Wong VHY, El-Nezami H (2015) Immunomodulatory effects of Lactobacillus rhamnosus GG on dendritic cells, macrophages and monocytes from healthy donors. J Funct Foods 13:71–79CrossRefGoogle Scholar
  23. Fong FL, Kirjavainen PV, El-Nezami H (2016) Immunomodulation of Lactobacillus rhamnosus GG (LGG)-derived soluble factors on antigen-presenting cells of healthy blood donors. Sci Rep 6:1–8CrossRefGoogle Scholar
  24. Fujiwara D, Inoue S, Wakabayashi H, Fujii T (2004) The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int Arch Allergy Immunol 135:205–215CrossRefGoogle Scholar
  25. Gill HS, Rutherfurd KJ, Prasad J, Gopal PK (2000) Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr 83:167–176CrossRefGoogle Scholar
  26. Gorska S, Schwarzer M, Jachymek W, Srutkova D, Brzozowska E, Kozakova H (2014) Distinct immunomodulation of bone marrow-derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol 80:6506–6516CrossRefGoogle Scholar
  27. Gorska S, Hermanova P, Ciekot J, Schwarzer M, Srutkova D, Brzozowska E et al (2016a) Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919. Glycobiology 26:1014–1024CrossRefGoogle Scholar
  28. Gorska S, Sandstrőm C, Wojas-Turek J, Rossowska J, Pajtasz-Piasecka E, Brzozowska E et al (2016b) Structural and immunomodulatory differences among lactobacilli exopolysaccharides isolated from intestines of mice with experimentally induced inflammatory bowel disease. Sci Rep 6:1–16CrossRefGoogle Scholar
  29. Gorska S, Schwarzer M, Srutkova D, Hermanova P, Brzozowska E, Kozakova H et al (2017) Polysaccharides L900/2 and L900/3 isolated from Lactobacillus rhamnosus LOCK 0900 modulate allergic sensitization to ovalbumin in a mouse model. Microb Biotechnol 10:586–593CrossRefGoogle Scholar
  30. Hashimoto S, Seyama Y, Yokokura T, Mutai M (1985) Cytotoxic factor production by Kupffer cells elicited with Lactobacillus casei and Corynebacterium parvum. Cancer Immunol Immunother 20:117–121CrossRefGoogle Scholar
  31. Havenaar R, Brink BT, Huis in’t Veld JHJ (1992) Selection of strains for probiotic use. In: Probiotics. Springer, Dordrecht, pp 209–224CrossRefGoogle Scholar
  32. Herías MV, Koninkx JF, Vos JG, Huis in’t Veld JH, van Dijk JE (2005) Probiotic effects of Lactobacillus casei on DSS-induced ulcerative colitis in mice. Int J Food Microbiol 103:143–155CrossRefGoogle Scholar
  33. Itoh H, Uchida M, Sashihara T (2011) Lactobacillus gasseri OL2809 is effective especially on the menstrual pain and dysmenorrheal in endometriosis patients: randomized, double-blind, placebo-controlled study. Cytotechnology 63:153–161CrossRefGoogle Scholar
  34. Ivanov II, Honda K (2012) Intestinal commensal microbes as immune modulators. Cell Host Microbe 12:496–508CrossRefGoogle Scholar
  35. Jin Z, Mendu SK, Birnir B (2013) GABA is an effective immunomodulatory molecule. Amino Acids 45:87–94CrossRefGoogle Scholar
  36. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357:1076–1079CrossRefGoogle Scholar
  37. Kalliomaki M, Salminen S, Poussa T, Arvilommi H, Isolauri E (2003) Probiotics and prevention of atopic disease: 4-year follow-up of a randomized placebo-controlled trial. Lancet 361:1869–1871CrossRefGoogle Scholar
  38. Kalliomaki M, Salminen S, Poussa T, Isolauri E (2007) Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo- controlled trial. J Allergy Clin Immunol 119:1019–1021CrossRefGoogle Scholar
  39. Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO (2013) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8(1):1–8Google Scholar
  40. Kato I, Yokokura T, Mutal M (1984) Augmentation of mouse natural killer cell activity by Lactobacillus casei and its surface antigens. Microbiol Immunol 28:209–217CrossRefGoogle Scholar
  41. Kekkonen RA, Kajasto E, Miettinen M, Veckman V, Korpela R, Julkunen I (2008) Probiotic Leuconostoc mesenteroides sp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-gamma production. World J Gastroenterol 14(8):1192–1203CrossRefGoogle Scholar
  42. Kim Y, Oh S, Yun HS, Oh S, Kim SH (2010) Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 51:123–130PubMedGoogle Scholar
  43. Kirjavainen PV, El-Nezami HS, Salminen SJ, Ahokas JT, Wright PA (1999) The effect of orally administered viable probiotic and dairy lactobacillus on mouse lymphocyte proliferation. FEMS Immunol Med Microbiol 26:131–135CrossRefGoogle Scholar
  44. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734CrossRefGoogle Scholar
  45. Konstantinova SR, Smidta H, de Vosa WM, Bruijnsb SCM, Singh SK, Valence F et al (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci 105:19474–19479CrossRefGoogle Scholar
  46. Kopp MV, Goldstein M, Dietschek A, Sofke A, Heinzmann A, Urbanek R (2008) Lactobacillus GG has in vitro effects on enhanced interleukin-10 and interferon-γ release of mononuclear cells but no in vivo effects in supplemented mothers and their neonates. Clin Exp Allergy 38:602–610CrossRefGoogle Scholar
  47. Liu CF, Tseng KC, Chiang SS, Lee BH, Hsu WH, Pan TM (2011) Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric 91:2284–2291PubMedGoogle Scholar
  48. Lucas PM, Blancato VS, Claisse O, Magni C, Lolkema JS, Lonvaud-Funel A (2007) Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology 153:2221–2230CrossRefGoogle Scholar
  49. Luongo D, Miyamoto J, Bergamo P, Nazzaro F, Baruzzi F, Sashihara T et al (2013) Differential modulation of innate immunity in vitro by probiotic strains of Lactobacillus gasseri. BMC Microbiol 13:298CrossRefGoogle Scholar
  50. Makino S, Ikegami S, Kano H, Sashihara T, Sugano H, Horiuchi H et al (2006) Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J Dairy Sci 89:2873–2881CrossRefGoogle Scholar
  51. Makino S, Goto A, Nakamura M, Ogawa M, Chiba Y, Hemmi J et al (2016) Enhanced natural killer cell activation by exopolysaccharides derived from yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricusOLL1073R-1. J Dairy Sci 99:915–923CrossRefGoogle Scholar
  52. Marchand J, Vandenplas Y (2000) Micro-organisms administered in the benefit of the host: myths and facts. Eur J Gastroenterol Hepatol 12:1077–1088CrossRefGoogle Scholar
  53. Maroof H, Hassan ZM, Mobarez AM, Mohamadabadi MA (2012) Lactobacillus acidophilus could modulate the immune response against breast cancer in murine model. J Clin Immunol 32:1353–1359CrossRefGoogle Scholar
  54. McCabe-Sellers BJ, Staggs CG, Bogle ML (2006) Tyramine in foods and monoamine oxidase inhibitor drugs: a crossroad where medicine, nutrition, pharmacy, and food industry converge. J Food Compos Anal 19:58–65CrossRefGoogle Scholar
  55. Miettinen M, Lehtonen A, Julkunen I, Matikainen S (2000) Lactobacilli and Streptococci activate NF-kappa B and STAT signaling pathways in human macrophages. J Immunol 164:3733–3740CrossRefGoogle Scholar
  56. Nastasi C, Candela M, Bonefeld CM, Geisler C, Hansen M, Krejsgaard T et al (2015) The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep 5:1–10CrossRefGoogle Scholar
  57. Niess JH, Reinecker HC (2006) Dendritic cells in the recognition of intestinal microbiota. Cell Microbiol 8:558–564CrossRefGoogle Scholar
  58. Olivares M, Díaz-Ropero MP, Gómez N, Lara-Villoslada F, Sierra S, Maldonado JA et al (2006) The consumption of two new probiotic strains, Lactobacillus gasseri CECT 5714 and Lactobacillus coryniformis CECT 5711, boosts the immune system of healthy humans. Int Microbiol 9:47–52PubMedGoogle Scholar
  59. Ooi LG, Ahmad R, Yuen KH, Liong MT (2010) Lactobacillus gasseri CHO220 and inulin reduced plasma total cholesterol and low-density lipoprotein cholesterol via alteration of lipid transporters. J Dairy Sci 93:5048–5058CrossRefGoogle Scholar
  60. Patten DA, Laws AP (2015) Lactobacillus-produced exopolysaccharides and their potential health benefits: a review. Benefic Microbes 6:457–471CrossRefGoogle Scholar
  61. Pena JA, Versalovic J (2003) Lactobacillus rhamnosus GG decreases TNF-a production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol 5:277–285CrossRefGoogle Scholar
  62. Perdigon G, Nader de Maclas ME, Alverarez S, Medici M, Oliver G (1986) Effect of a mixture of Lactobacillus casei and Lactobacillus acidophilus administered orally on the immune system in mice. J Food Prot 49:986–989CrossRefGoogle Scholar
  63. Perdigon G, Macias ME, Alvarez S, Oliver G, Holgado AA (1990) Prevention of gastrointestinal infection using immunobiological methods with milk fermented with Lactobacillus casei and Lactobacillus acidophilus. J Dairy Res 57:255–264CrossRefGoogle Scholar
  64. Perdigón G, Alvarez S, Holgado AA (1991) Immunoadjuvant activity of oral Lactobacillus casei: influence of dose on the secretory immune response and protective capacity in intestinal infections. J Dairy Res 58:485–496CrossRefGoogle Scholar
  65. Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol 2:1–15CrossRefGoogle Scholar
  66. Shah P, Swiatlo E (2008) A multifaceted role for polyamines in bacterial pathogens. Mol Microbiol 68:4–16CrossRefGoogle Scholar
  67. Shahid M, Tripathi T, Sobia F, Moin S, Siddiqui M, Khan RA (2009) Histamine, histamine receptors, and their role in immunomodulation: an updated systematic review. Open Immunol J 2:9–41CrossRefGoogle Scholar
  68. Shalaby AR (1996) Significance of biogenic amines in food safety and human health. Food Res Int 29:675–690CrossRefGoogle Scholar
  69. Shida K, Takahashi R, Iwadate E, Takamizawa K, Yasui H, Sato T et al (2002) Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin Exp Allergy 32:563–570CrossRefGoogle Scholar
  70. Shida K, Suzuki T, Kiyoshima-Shibata J, Shimada S, Nanno M (2006) Essential roles of monocytes in stimulating human peripheral blood mononuclear cells with Lactobacillus casei to produce cytokines and augment natural killer cell activity. Clin Vaccine Immunol 13:997–1003CrossRefGoogle Scholar
  71. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M et al (2013) The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573CrossRefGoogle Scholar
  72. Takeda K, Okumura K (2007) Effects of a fermented milk drink containing Lactobacillus casei strain shirota on the human NK-cell activity. J Nutr 137:791–793CrossRefGoogle Scholar
  73. Tsai YT, Cheng PC, Pan TM (2010) Immunomodulating activity of Lactobacillus paracasei subsp. paracasei NTU 101 in enterohemorrhagic Escherichia Coli O157:H7-infected mice. J Agric Food Chem 58:11265–11272CrossRefGoogle Scholar
  74. Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL et al (2015) Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence 6:29–39CrossRefGoogle Scholar
  75. Vinderola G, Perdigon G, Duarte J, Farnworth E, Matar C (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260CrossRefGoogle Scholar
  76. von de Weid T, Bulliard C, Schiffrin E (2001) Induction by a lactic acid bacterium of a population of CD4+ T cells with low proliferative capacity that produce transforming growth factor β and interleukin-10. Clin Diagn Lab Immunol 8:695–701PubMedPubMedCentralGoogle Scholar
  77. Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996CrossRefGoogle Scholar
  78. Wu CT, Chen PJ, Lee YT, Ko JL, Ko HL (2016) Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. J Microbiol Immunol Infect 49:625–635CrossRefGoogle Scholar
  79. Zakostelska Z, Kverka M, Klimesova K, Rossmann P, Mrazek J, Kopecny J et al (2011) Lysate of probiotic Lactobacillus casei DN-114 001 ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment. PLoS One 6:1–11CrossRefGoogle Scholar
  80. Zhu Y, Zhu J, Zhao L, Zhang M, Guo H, Ren F (2016) Effect of oral administration of Lactobacillus paracasei L9 on mouse systemic immunity and the immune response in the intestine. Arch Biol Sci 68:311–318CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sumanpreet Kaur
    • 1
  • Preeti Sharma
    • 1
  • Sukhraj Kaur
    • 1
  1. 1.Department of MicrobiologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations