Advertisement

Enterococci As Nosocomial Pathogen

  • Preeti Sharma
  • Sumanpreet Kaur
  • Sukhraj Kaur
Chapter

Abstract

Enterococcal species are Gram-positive lactic acid bacteria that are ubiquitously present in environmental samples, plants, and gastrointestinal tracts of animals. As commensals they are known to benefit the host, but in recent years, they have earned dubious reputation as nosocomial pathogens. They are known to cause diseases like urinary tract infections, endocarditis, bacteremia, and intra-abdominal infections especially in immunocompromised patients that are subjected to prolonged antibiotic treatments. The various factors contributing to their status as nosocomial pathogens are their intrinsic and acquired resistance to various classes of antibiotics. They are known to persist on animate and inanimate surfaces for a long period of time which thus act as reservoirs for the spread of the infection in hospitals. Recent studies have shown that the nosocomial strains are genetically distinct from commensal Enterococcal strains. Thus, herein the various diseases caused by nosocomial Enterococcus spp., the problem of antibiotic resistance, and their treatment have been reviewed. Further, this chapter also discusses the various virulence factors contributing to its pathogenicity and highlights the genetic differences between pathogenic and commensal Enterococcus spp.

Keywords

Enterococcus faecium E. faecalis Nosocomial Pathogen Virulence factors 

Notes

Acknowledgment

This work was supported by research grant (grant number, 42-478/2013 SR) sponsored by the University Grants Commission (UGC), New Delhi, India. Ms. Preeti Sharma is thankful to the University of Potential for Excellence scheme of UGC for the fellowship. Ms. Sumanpreet Kaur is thankful to UGC for the fellowship.

References

  1. Aakra A, Vebø H, Indahl U, Snipen L, Gjerstad O, Lunde M et al (2010) The response of Enterococcus faecalis V583 to chloramphenicol treatment. Int J Microbiol 2010:483048.  https://doi.org/10.1155/2010/483048 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aslangul E, Massias L, Meulemans A, Chau F, Andremont A, Courvalin P et al (2006) Acquired gentamicin resistance by permeability impairment in Enterococcus faecalis. Antimicrob Agents Chemother 50:3615–3621PubMedPubMedCentralCrossRefGoogle Scholar
  3. Billington EO, Phang SH, Gregson DB, Pitout JD, Ross T, Church DL et al (2014) Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: a population-based study. Int J Infect Dis 26:76–82PubMedCrossRefGoogle Scholar
  4. Bonilla HF, Zervos MA, Lyons MJ, Bradley SF, Hedderwick SA, Ramsey MA et al (1997) Colonization with vancomycin-resistant Enterococcus faecium: comparison of a long-term-care unit with an acute-care hospital. Infect Control Hosp Epidemiol 18:333–339PubMedCrossRefGoogle Scholar
  5. Boyd DA, Willey BM, Fawcett D, Gillani N, Mulvey MR (2008) Molecular characterization of enterococcus faecalis N06-0364 with low-level vancomycin resistance harboring a novel D-Ala-D-Ser gene cluster, vanL. Antimicrob Agents Chemother 52:2667–2672PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brede DA, Snipen LG, Ussery DW, Nederbragt AJ, Nes IF (2011) Complete genome sequence of the commensal Enterococcus faecalis 62, isolated from a healthy Norwegian infant. J Bacteriol 193:2377–2378.  https://doi.org/10.1128/JB.00183-11 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Casewell M, Friis C, Marco E, McMullin P, Phillips I (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52:159–161PubMedCrossRefGoogle Scholar
  8. Chakraborty A, Pal NK, Sarkar S, Gupta MS (2015) Antibiotic resistance pattern of enterococci isolates from nosocomial infections in a tertiary care hospital in Eastern India. J Natl Sci Biol Med 6(2):394CrossRefGoogle Scholar
  9. Chow JW (2000) Aminoglycoside resistance in enterococci. Clin Infect Dis 31(2):586–589PubMedCrossRefGoogle Scholar
  10. Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB et al (1993) Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental Enterococcal endocarditis. Antimicrob Agents Chemother 37:2474–2477PubMedPubMedCentralCrossRefGoogle Scholar
  11. Clewell DB (1993) Sex pheromones and the plasmid-encoded mating response in enterococcus faecalis. In: Clewell DB (ed) Bacterial conjugation. Springer, BostonCrossRefGoogle Scholar
  12. Costa Y, Galimand M, Leclercq R, Duval J, Courvalin P (1993) Characterization of the chromosomal aac (6′)-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother 37:1896–1903PubMedPubMedCentralCrossRefGoogle Scholar
  13. Courvalin P (2006) Vancomycin resistance in Gram-positive cocci. Clin Infect Dis 42(Supplement 1):S25–S34PubMedCrossRefGoogle Scholar
  14. Cox CR, Coburn PS, Gilmore MS (2005) Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Protein Pept Sci 6:77–84PubMedCrossRefGoogle Scholar
  15. Edelsberg J, Weycker D, Barron R, Li X, Wu H, Oster G et al (2014) Prevalence of antibiotic resistance in US hospitals. Diagn Microbiol Infect Dis 78:255–262PubMedCrossRefGoogle Scholar
  16. Ford CD, Lopansri BK, Haydoura S, Snow G, Dascomb KK, Asch J et al (2015) Frequency, risk factors, and outcomes of vancomycin-resistant Enterococcus colonization and infection in patients with newly diagnosed acute leukemia: different patterns in patients with acute myelogenous and acute lymphoblastic leukemia. Infect Control Hosp Epidemiol 36:47–53PubMedCrossRefGoogle Scholar
  17. Forrest GN, Arnold RS, Gammie JS, Gilliam BL (2011) Single center experience of a vancomycin resistant Enterococcal endocarditis cohort. J Infect 63:420–428PubMedCrossRefGoogle Scholar
  18. Galimand M, Schmitt E, Panvert M, Desmolaize B, Douthwaite S, Mechulam Y et al (2011) Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM. RNA 17:251–262PubMedPubMedCentralCrossRefGoogle Scholar
  19. Galloway-Pena JR, Rice LB, Murray BE (2011) Analysis of PBP5 of early US isolates of Enterococcus faecium: sequence variation alone does not explain increasing ampicillin resistance over time. Antimicrob Agents Chemother 55:3272–3277PubMedPubMedCentralCrossRefGoogle Scholar
  20. Gilmore MS, Lebreton F, van Schaik W (2013) Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol 16:10–16PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gray J, Marsh PJ, Stewart D, Pedler SJ (1994) Enterococcal bacteraemia: a prospective study of 125 episodes. J Hosp Infect 27:179–186PubMedCrossRefGoogle Scholar
  22. Hayden MK (2000) Insights into the epidemiology and control of infection with vancomycin-resistant enterococci. Clin Infect Dis 31:1058–1065PubMedCrossRefGoogle Scholar
  23. Heikens E, Singh KV, Jacques-Palaz KD, van Luit-Asbroek M, Oostdijk EA, Bonten MJ et al (2001) Contribution of the Enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis. Microbes Infect 13:1185–1190CrossRefGoogle Scholar
  24. Heikens E, Bonten MJ, Willems RJ (2007) Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol 189:8233–8240PubMedPubMedCentralCrossRefGoogle Scholar
  25. Heintz BH, Halilovic J, Christensen CL (2010) Vancomycin-resistant Enterococcal urinary tract infections. Pharmacother: J Hum Pharmacol Drug Ther 30:1136–1149CrossRefGoogle Scholar
  26. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA et al (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011PubMedCrossRefGoogle Scholar
  27. Hota B (2004) Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis 39:1182–1189PubMedCrossRefGoogle Scholar
  28. Ike Y, Clewell DB, Segarra RA, Gilmore MS (1990) Genetic analysis of the pAD1 hemolysin/bacteriocin determinant in Enterococcus faecalis: Tn917 insertional mutagenesis and cloning. J Bacteriol 172:155–163PubMedPubMedCentralCrossRefGoogle Scholar
  29. Karmarkar MG, Gershom ES, Mehta PR (2004) Enterococcal infections with special reference to phenotypic characterization & drug resistance. Indian J Med Res 119:22–25PubMedGoogle Scholar
  30. Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kreft B, Marre R, Schramm U, Wirth R (1992) Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect Immun 60:25–30PubMedPubMedCentralGoogle Scholar
  32. Landman D, Quale JM (1997) Management of infections due to resistant enterococci: a review of therapeutic options. J Antimicrob Chemother 40:161–170PubMedCrossRefGoogle Scholar
  33. Lautenbach E, Bilker WB, Brennan PJ (1999) Enterococcal bacteremia: risk factors for vancomycin resistance and predictors of mortality. Infect Control Hosp Epidemiol 20:318–323PubMedCrossRefGoogle Scholar
  34. Leavis HL, Willems RJ, Van Wamel WJ, Schuren FH, Caspers MP, Bonten MJ (2007) Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium. PLoS Pathog 26(3):e7CrossRefGoogle Scholar
  35. Lebreton F, Depardieu F, Bourdon N, Fines-Guyon M, Berger P, Camiade S et al (2011) D-Ala-D-Ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55:4606–4612PubMedPubMedCentralCrossRefGoogle Scholar
  36. MacCallum WG, Hastings TW (1899) A case of acute endocarditis caused by Micrococcus zymogenes (nov. spec.), with a description of the microorganism. J Exp Med 4:521–534PubMedPubMedCentralCrossRefGoogle Scholar
  37. Maki DG, Agger WA (1988) Enterococcal bacteremia: clinical features, the risk of endocarditis, and management. Medicine 67:248PubMedCrossRefGoogle Scholar
  38. McDonald JR, Olaison L, Anderson DJ, Hoen B, Miro JM, Eykyn S et al (2005) Enterococcal endocarditis: 107 cases from the international collaboration on endocarditis merged database. Am J Med 118:759–766PubMedCrossRefGoogle Scholar
  39. McKenzie FE (2006) Case mortality in polymicrobial bloodstream infections. J Clin Epidemiol 59:760–761PubMedPubMedCentralCrossRefGoogle Scholar
  40. Menichetti F, Sganga G (2009) Definition and classification of intra-abdominal infections. J Chemother 21:3–4PubMedCrossRefGoogle Scholar
  41. Miller WR, Munita JM, Arias CA (2014) Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti-Infect Ther 12:1221–1236PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mudd AJ (2000) Vancomycin-resistant enterococci and use of avoparcin in animal feed: is there a link? Med J Aust 172:458–459PubMedGoogle Scholar
  43. Mundt JO (1961) Occurrence of enterococci: bud, blossom, and soil studies. Appl Microbiol 9:541–544PubMedPubMedCentralGoogle Scholar
  44. Mundt JO (1963) Occurrence of enterococci on plants in a wild environment. Appl Microbiol 1:141–144Google Scholar
  45. Mundy LM, Sahm DF, Gilmore MS (2000) Relationships between Enterococcal virulence and antimicrobial resistance. Clin Microbiol Rev 13:513–522PubMedPubMedCentralCrossRefGoogle Scholar
  46. Murdoch DR, Corey GR, Hoen B, Miró JM, Fowler VG Jr, Bayer AS et al (2009) Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the international collaboration on endocarditis-prospective cohort study. JAMA Intern Med 169:463–473CrossRefGoogle Scholar
  47. Murray BE (1990) The life and times of the Enterococcus. Clin Microbiol Rev 3:46–65PubMedPubMedCentralCrossRefGoogle Scholar
  48. Murray BE (1998) Diversity among multidrug-resistant enterococci. Emerg Infect Dis 4:37PubMedPubMedCentralCrossRefGoogle Scholar
  49. Nallapareddy SR, Murray BE (2008) Role played by serum, a biological cue, in the adherence of Enterococcus faecalis to extracellular matrix proteins, collagen, fibrinogen, and fibronectin. J Infect Dis 197:1728–1736PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nallapareddy SR, Weinstock GM, Murray BE (2003) Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family. Mol Microbiol 47:1733–1747PubMedCrossRefGoogle Scholar
  51. Nallapareddy SR, Singh KV, Murray BE (2008) Contribution of the collagen adhesin Acm to pathogenesis of Enterococcus faecium in experimental endocarditis. Infect Immun 76:4120–4128PubMedPubMedCentralCrossRefGoogle Scholar
  52. Nallapareddy SR, Sillanpää J, Mitchell J, Singh KV, Chowdhury SA, Weinstock GM et al (2011a) Conservation of Ebp-type pilus genes among enterococci and demonstration of their role in adherence of Enterococcus faecalis to human platelets. Infect Immun 79:2911–2920PubMedPubMedCentralCrossRefGoogle Scholar
  53. Nallapareddy SR, Singh KV, Sillanpää J, Zhao M, Murray BE (2011b) Relative contributions of Ebp pili and the collagen adhesin ace to host extracellular matrix protein adherence and experimental urinary tract infection by Enterococcus faecalis OG1RF. Infect Immun 79:2901–2910PubMedPubMedCentralCrossRefGoogle Scholar
  54. Nielsen HV, Guiton PS, Kline KA, Port GC, Pinkner JS, Neiers F et al (2012) The metal ion-dependent adhesion site motif of the Enterococcus faecalis EbpA pilin mediates pilus function in catheter-associated urinary tract infection. MBio 3:e00177-12.  https://doi.org/10.1128/mBio.00177-12 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Niven CF Jr, Sherman JM (1944) Nutrition of the enterococci. J Bacteriol 47:335–342PubMedPubMedCentralGoogle Scholar
  56. Noskin GA, Peterson LR, Warren JR (1995) Enterococcus faecium and Enterococcus faecalis bacteremia: acquisition and outcome. Clin Infect Dis 20:296–301PubMedCrossRefGoogle Scholar
  57. Olmested S, Dunny G, Erlandsen S, Wells C (1994) A plasmid encoded surface protein on Enterococcus faecalis augments its internalization by cultured intestinal epithelial cells. J Infect Dis 170:1549–1556CrossRefGoogle Scholar
  58. Palmer KL, Gilmore MS (2010) Multidrug-resistant enterococci lack CRISPR-cas. MBio 29(1):e00227–e00210Google Scholar
  59. Park SY, Shin YP, Kim CH, Park HJ, Seong YS, Kim BS et al (2008) Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol 181:6328–6336PubMedCrossRefGoogle Scholar
  60. Paulsen IT (2003) Role of mobile DNA in the evolution of vancomycin-resistant enterococcus faecalis. Science 299(5615):2071–2074PubMedCrossRefGoogle Scholar
  61. Pericás J, Zboromyrska Y, Cervera C, Castañeda X, Almela M, Garcia-De-La-Maria C et al (2015) Enterococcal endocarditis revisited. Future Microbiol 10:1215–1240PubMedCrossRefGoogle Scholar
  62. Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586PubMedPubMedCentralCrossRefGoogle Scholar
  63. Qin X, Galloway-Peña JR, Sillanpaa J, Roh JH, Nallapareddy SR, Chowdhury S et al (2012) Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol 12:135PubMedPubMedCentralCrossRefGoogle Scholar
  64. Rice LB, Calderwood SB, Eliopoulos GM, Farber BF, Karchmer AW (1991) Enterococal endocarditis: a comparison of prosthetic and native valve disease. Rev Infect Dis 13:1–7PubMedCrossRefGoogle Scholar
  65. Rice LB, Lakticová V, Helfand MS, Hutton-Thomas R (2004) In vitro anti Enterococcal activity explains associations between exposures to antimicrobial agents and risk of colonization by multi resistant enterococci. J Infect Dis 190:2162–2166PubMedCrossRefGoogle Scholar
  66. Rich RL, Kreikemeyer B, Owens RT, LaBrenz S, Narayana SV, Weinstock GM et al (1999) Ace is a collagen-binding MSCRAMM from Enterococcus faecalis. J Biol Chem 274:26939–26945PubMedCrossRefGoogle Scholar
  67. Sartelli M, Catena F, Ansaloni L, Coccolini F, Corbella D, Moore EE et al (2014) Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW study. World J Emerg Surg 9:37PubMedPubMedCentralCrossRefGoogle Scholar
  68. Schleifer KH, Kilpper-Bälz R (1984) Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Evol Microbiol 34:31–34Google Scholar
  69. Schlievert PM, Gahr PJ, Assimacopoulos AP, Dinges MM, Stoehr JA, Harmala JW et al (1998) Aggregation and binding substances enhance pathogenicity in rabbit models of Enterococcus faecalis endocarditis. Infect Immun 66:218–223PubMedPubMedCentralGoogle Scholar
  70. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE (2001) Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun 69:4366–4372PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sherman JM (1937) The streptococci. Bacteriol Rev 1:3–97PubMedPubMedCentralGoogle Scholar
  72. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A et al (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:1–14PubMedCrossRefGoogle Scholar
  73. Sifaoui F, Arthur M, Rice L, Gutmann L (2001) Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob Agents Chemother 45:2594–2597PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sillanpää J, Chang C, Singh KV, Montealegre MC, Nallapareddy SR, Harvey BR et al (2013) Contribution of individual Ebp pilus subunits of Enterococcus faecalis OG1RF to pilus biogenesis, biofilm formation and urinary tract infection. PLoS One 8(7):e68813.  https://doi.org/10.1371/journal.pone.0068813 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Silva N, Igrejas G, Gonçalves A, Poeta P (2012) Commensal gut bacteria: distribution of Enterococcus species and prevalence of Escherichia coli phylogenetic groups in animals and humans in Portugal. Ann Microbiol 62:449–459CrossRefGoogle Scholar
  76. Singh KV, Weinstock GM, Murray BE (2002) An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother 46:1845–1850PubMedPubMedCentralCrossRefGoogle Scholar
  77. Singh KV, Nallapareddy SR, Sillanpää J, Murray BE (2010) Importance of the collagen adhesin ace in pathogenesis and protection against Enterococcus faecalis experimental endocarditis. PLoS Pathog 6(1):e1000716.  https://doi.org/10.1371/journal.ppat.1000716 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Sreeja S, Babu PRS, Prathab AG (2012) The prevalence and the characterization of the Enterococcus species from various clinical samples in a tertiary care hospital. J Clin Diagn Res 6:1486–1488PubMedPubMedCentralGoogle Scholar
  79. Stevens MP, Edmond MB (2005) Endocarditis due to vancomycin resistant enterococci: case report and review of the literature. Clin Infect Dis 41:1134–1142PubMedCrossRefGoogle Scholar
  80. Szeto CC, Kwan BC, Chow KM, Law MC, Pang WF, Chung KY et al (2009) Recurrent and relapsing peritonitis: causative organisms and response to treatment. Am J Kidney Dis 54:702–710PubMedCrossRefGoogle Scholar
  81. Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, Hancock LE (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol 72:1022–1036PubMedPubMedCentralCrossRefGoogle Scholar
  82. Tornieporth NG, Roberts RB, John J, Hafner A, Riley LW (1996) Risk factors associated with vancomycin-resistant Enterococcus faecium infection or colonization in 145 matched case patients and control patients. Clin Infect Dis 23:767–772PubMedCrossRefGoogle Scholar
  83. Vijayvargiya R, Veis JH (1996) Antibiotic-resistant endocarditis in a hemodialysis patient. J Am Soc Nephrol 7:536–542PubMedGoogle Scholar
  84. Waters CM, Hirt H, McCormick JK, Schlievert PM, Wells CL, Dunny GM (2004) An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol Microbiol 52:1159–1171PubMedCrossRefGoogle Scholar
  85. Woodford N, Soltani M, Hardy KJ (2001) Frequency of esp in Enterococcus faecium isolates. Lancet 358:584.  https://doi.org/10.1016/S0140-6736(01)05726-9 CrossRefPubMedGoogle Scholar
  86. Xu X, Lin D, Yan G, Ye X, Wu S, Guo Y et al (2010) vanM, a new glycopeptide resistance gene cluster found in Enterococcus faecium. Antimicrob Agents Chemother 54:4643–4647PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zarb P, Coignard B, Griskeviciene J, Muller A, Vankerckhoven V, Weist K et al (2012) The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill 17:20316PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Preeti Sharma
    • 1
  • Sumanpreet Kaur
    • 1
  • Sukhraj Kaur
    • 1
  1. 1.Department of MicrobiologyGuru Nanak Dev UniversityAmritsarIndia

Personalised recommendations