Advertisement

TGR5 Receptor

  • Senthilkumar Rajagopal
  • Murugavel Ponnusamy
Chapter

Abstract

Bile acid activated TGR5 is a G protein-coupled bile acid receptor 1 (GPBAR 1), which is also known as membrane type receptor (M-BAR). The single TGR5 exon gene encodes a protein of 330 amino acids and predicated seven transmembrane domain structures. The most of the tissues in humans such as endocrine glands, adipocytes, muscles, gall bladder, immune organs, spinal cord, and the enteric nervous system express TGR5 receptors. Whereas, liver and intestine have high levels expressions of nuclear receptor farenosid X-receptor (FXR). The primary and secondary bile acids act as agonist for this receptor and various steroid hormones as well. The mode of TGR5 activation varies depends on the tissue and it activates different signaling cascades depending on the cell type. The plasma membrane receptor TGR5 and nuclear receptor FXR can modulate endocrine function of bile acid. This chapter summarizes the basic information of TGR5 and FXR and their physiology and pathological functions.

Keywords

Bile acids Contraction and relaxation Nuclear receptor Plasma membrane receptor Smooth muscle physiology 

References

  1. Appleby, R., & Walters, J. (2014). The role of bile acids in functional GI disorders. Neurogastroenterology and Motility, 26, 1057–1069.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Arab, J., Karpen, S., Dawson, P., Arrese, M., & Trauner, M. (2017). Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology, 65, 350–362.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ashcroft, F. (2005). ATP-sensitive potassium channelopathies: Focus on insulin secretion. Journal of Clinical Investigation, 115, 2047–2058.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bala, V., Mahavadi, S., Rajagopal, S., Zhou, R., Kuemmerle, J. F., Sanyal, A. J., & Murthy, K. S. (2011). Bile acid-induced stimulation of ERK1/2 activity, GLP-1 and PYY release in enteroendocrine cells are mediated by the activation of Epac/PLC-ɛ signaling pathway via GS-coupled TGR5. Gastroenterology, 140, S–147.Google Scholar
  5. Bala, V., Rajagopal, S., Kumar, D. P., Nalli, A. D., Mahavadi, S., Sanyal, A. J., Grider, J. R., & Murthy, K. S. (2014). Release of GLP-1 and PYY in response to the activation of G-protein coupled bile acid receptor TGR5 is mediated by Epac/PLC e pathway and modulated by endogenous H2S. Frontiers in Physiology, 5, 1–11.CrossRefGoogle Scholar
  6. Bell, G., Santerre, R., & Mullenbach, G. (1983). Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature, 302, 716–718.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Berdeaux, R., & Stewart, R. (2012). cAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism, and regeneration. Amercan Journal of Physiology; Endocrinology and Metabolism, 303, E1–E17.CrossRefGoogle Scholar
  8. Bhattacharya, S., Mahavadi, S., Al-Shboul, O., Rajagopal, S., Grider, J. R., & Murthy, K. S. (2013). Differential regulation of muscarinic m2 and m3 receptor signaling in gastrointestinal smooth muscle by caveolin-1. American Journal of Physiology; Cell Physiology, 305, C334–C347.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Blumenthal, D., Copps, J., Smith-Nguyen, E., Zhang, P., Heller, W., & Taylor, S. (2014). The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the Type IIβ. Journal of Biological Chemistry, 289, 28505–28512.PubMedCrossRefPubMedCentralGoogle Scholar
  10. Brighton, C., Rievaj, J., Kuhre, R., Glass, L., Schoonjans, K., Holst, J., Gribble, F., & Reimann, F. (2015). Bile acids trigger GLP-1 release predominantly by accessing basolaterally located G Protein–coupled bile acid receptors. Endocrinology, 156, 3961–3970.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Broeders, E., Nascimento, E., Havekes, B., Brans, B., Roumans, K., Tailleux, A., Schaart, G., Kouach, M., Charton, J., Deprez, B., Bouvy, N., Mottaghy, F., Staels, B., van Marken Lichtenbelt, W., & Schrauwen, P. (2015). The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cellular Metabolsim, 22, 418–426.CrossRefGoogle Scholar
  12. Carmen, F., De Marino, S., Carino, A., Sepe, V., Marchianò, S., Cipriani, S., Di Leva, F., Limongelli, V., Monti, M., Capolupo, A., Distrutti, E., Fiorucci, S., & Zampella, A. (2017). Targeting bile acid receptors: Discovery of a potent and selective farnesoid X receptor agonist as a new lead in the pharmacological approach to liver diseases. Frontiers in Pharmacology, 8, 162.Google Scholar
  13. Cerf, M. (2013). Beta cell dysfunction and insulin resistance. Frontiers in Endocrinology, 4, 37.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chang, H., Chou, C., Lin, Y., Shieh, P., Kuo, D., Jan, C., & Liang, W. (2016a). Esculetin, a natural coumarin compound, evokes Ca(2+) movement and activation of Ca(2+)-associated mitochondrial apoptotic pathways that involved cell cycle arrest in ZR-75-1 human breast cancer cells. Tumour Biology, 37, 4665–4678.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chang, Y., Tae, H., Kim Ja, H., & Geon, K. (2016b). Farnesoid X receptor as a regulator of fuel consumption and mitochondrial function. Archieves of Pharmacological Research, 39, 1062–1074.CrossRefGoogle Scholar
  16. Chaube, R., Hess, D., Wang, Y., Plummer, B., Sun, Q., Laurita, K., & Stamler, J. (2014). Regulation of the skeletal Muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation. Journal of Biological chemistry, 289, 8612–8619.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chen, X., Lou, G., Meng, Z., & Huang, W. (2011). TGR5: A novel target for weight maintenance and glucose metabolism. Experimental Diabetes and Research, 2011, 1–5.Google Scholar
  18. Chiang, J. (2002). Bile acid regulation of gene expression: Roles of nuclear hormone receptors. Endocrinology Review, 23, 443–463.CrossRefGoogle Scholar
  19. Chiang, J. (2017a). Bile acid metabolism and signaling in liver disease and therapy. Liver Research, 1, 3–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chiang, J. (2017b). Recent advances in understanding bile acid homeostasis. F1000 Research, 6, 2029.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cipriani, S., Mencarelli, A., Palladino, G., & Fiorucci, S. (2010). FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats. Journal of Lipid Research, 51, 771–784.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Claudel, T., Staels, B., & Kuipers, F. (2005). The farnesoid X receptor: A molecular link between bile acid and lipid and glucose metabolism. Arteriosclerosis Thrombosis and Vascular Biology, 25, 2020–2030.CrossRefGoogle Scholar
  23. Ding, L., Yang, L., Zhengtao, W., & Huangb, W. (2015). Bile acid nuclear receptor FXR and digestive system diseases. Acta Pharmacologica Sinica, 5, 135–144.CrossRefGoogle Scholar
  24. Drigo, R., Fonseca, T., Werneck-de-Castro, J., & Bianco, A. (2013). Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochimica Biophysica Acta, 1830, 3956–3964.CrossRefGoogle Scholar
  25. Duan, H., Ning, M., Zou, Q., Ye, Y., Feng, Y., Zhang, L., Leng, Y., & Shen, J. (2015). Discovery of intestinal targeted TGR5 agonists for the treatment of type 2 diabetes. Journal of Medicinal Chemistry, 58, 3315–3328.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Duboc, H., Taché, Y., & Hofmann, A. (2014). The bile acid TGR5 membrane receptor: From basic research to clinical application. Digestive Liver Diseases, 46, 302–312.CrossRefGoogle Scholar
  27. Dufer, M., Hörth, K., Krippeit-Drews, P., & Drews, G. (2012). The significance of the nuclear farnesoid X receptor (FXR) in beta cell function. Islets, 4, 333–338.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Düfer, M., Hörth, K., Wagner, R., Schittenhelm, B., Prowald, S., Wagner, T., Oberwinkler, J., Lukowski, R., Gonzalez, F., Krippeit-Drews, P., & Drews, G. (2012). Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and K(ATP) channel inhibition. Diabetes, 61, 1479–1489.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Duran-Sandoval, D., Cariou, B., Percevault, F., Hennuyer, N., Grefhorst, A., van Dijk, T., Gonzalez, F., Fruchart, J., Kuipers, F., & Staels, B. (2005). The farnesoid X receptor modulates hepatic carbohydrate metabolism during the fasting-refeeding transition. Journal of Biological Chemistry, 280, 29971–29979.PubMedCrossRefPubMedCentralGoogle Scholar
  30. Fiorucci, S., Mencarelli, A., Palladino, G., & Cipriani, S. (2009). Bile-acid-activated receptors: Targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends in Pharmacological Sciences, 30, 570–580.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Foord, S., Bonner, T., Neubig, R., Rosser, E., Pin, J., Davenport, A., Spedding, M., & Harmar, A. (2005). International union of pharmacology. XLVI. G protien coupled receptor list. Pharmacological Reviews, 57, 279–288.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Franklin, I., & Wollheim, C. (2004). GABA in the endocrine pancreas. Journal of General Physiology, 123, 185–190.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fu, D., Wakabayashi, Y., Lippincott-Schwartz, J., & Arias, I. (2011). Bile acid stimulates hepatocyte polarization through a cAMP-Epac-MEKLKB1-AMPK pathway. Proceeding of Natural Acadmics of Sciences, USA, 108, 1403–1408.CrossRefGoogle Scholar
  34. Guo, C., Su, J., Li, Z., Xiao, R., Wen, J., Li, Y., Zhang, M., Zhang, X., Yu, D., Huang, W., Chen, W., & Wang, Y. (2015). The G-protein-coupled bile acid receptor Gpbar1 (TGR5) suppresses gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. Oncotarget, 6, 34402–34413.PubMedPubMedCentralGoogle Scholar
  35. Hansen, M., Sonne, D., & Knop, F. (2014). Bile acid sequestrants: Glucose-lowering mechanisms and efficacy in type 2 diabetes. Current Diabetes Reports, 14, 485–495.CrossRefGoogle Scholar
  36. Heemstra, K., Soeters, M., Fliers, E., Serlie, M., Burggraaf, J., van Doorn, M., van der Klaauw, A., Romijn, J., Smit, J., Corssmit, E., & Visser, T. (2009). Type 2 iodothyronine deiodinase in skeletal muscle: Effects of hypothyroidism and fasting. Journal of Clinical Endocrinology and Metabolism, 94, 2144–2150.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hiroki, T., Yoko, Y., Kohkichi, M., Naho, K., Tatsuya, T., Yoko, T., Kazuo, T., & Mitsuhiro, W. (2016). Role of bile acids in the regulation of the metabolic pathways. World Journal of Diebetes, 7, 260–270.CrossRefGoogle Scholar
  38. Hisae, A., Koro, G., Fujiwara, K., Anai, M., Chiba, S., Masaki, T., Kakuma, T., & Shibata, H. (2017). Glucagon-like peptide-1 reduces pancreatic β-cell mass through hypothalamic neural pathways in high-fat diet-induced obese rats. Scientific Reports, 7, 5578.CrossRefGoogle Scholar
  39. Hofmann, A. (1999). The continuing importance of bile acids in liver and intestinal disease. Archieves of Internal Medicine, 159, 2647–2658.CrossRefGoogle Scholar
  40. Hofmann, A., & Eckmann, L. (2006). How bile acids confer gut mucosal protection against bacteria. Proceeding of Natural Acadmics of Sciences, USA, 103, 4333–4334.CrossRefGoogle Scholar
  41. Houten, S., Watanabe, M., & Auwerx, J. (2006). Endocrine functions of bile acids. EMBO Journal, 25, 1419–1425.PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hua, C., Zhi-Xiang, C., Wang, K., Meng-Meng, N., Qing-An, Z., Ying, F., Yang-Liang, Y., Ying, L., & Jian-Hua, S. (2016). ntestinally-targeted TGR5 agonists equipped with quaternary ammonium have an improved hypoglycemic effect and reduced gallbladder filling effect. Scientific Reports, 6, 1–6.CrossRefGoogle Scholar
  43. Inagaki, T., Moschetta, A., Youn-Kyoung, L., Peng, L., Zhao, G., Downes, M., Yu, R., Shelton, J., Richardson, J., Repa, J., Mangelsdorf, D., & Kliewer, S. (2006). Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proceeding of Natural Acadmics of Sciences, USA, 103, 3920–3925.CrossRefGoogle Scholar
  44. Iuliana Ristea, P., Helleboid-Chapman, A., Lucas, A., Vandewalle, B., Dumont, J., Bouchaert, E., Derudas, B., Kerr-Conte, J., Caron, S., Pattou, F., & Staels, B. (2010). The nuclear receptor FXR is expressed in pancreatic β-cells and protects human islets from lipotoxicity. FEBS Letter, 584, 2845–2851.CrossRefGoogle Scholar
  45. Jacinto, S., & Fang, S. (2014). Essential roles of bile acid receptors FXR and TGR5 as metabolic regulators. Animal cells and Systems, 18, 359–364.CrossRefGoogle Scholar
  46. Jiao, Y., Lu, Y., & Li, X. (2015). Farnesoid X receptor: A master regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacologica Sinica, 36, 44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Katsuma, S., Hirasawa, A., & Tsujimoto, G. (2005). Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochemical and Biophysical Research Communication, 329, 386–390.CrossRefGoogle Scholar
  48. Kawamata, Y., Fujii, R., Hosoya, M., Harada, M., Yoshida, H., Miwa, M., Fukusumi, S., Habata, Y., Itoh, T., Shintani, Y., Hinuma, S., Fujisawa, Y., & Fujino, M. (2003). A G protein-coupled receptor responsive to bile acids. Journal of Biological Chemistry, 278, 9435–9440.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Kazuaki, Y., Tadakazu, H., Katsuyoshi, S., Nobuhiko, K., Riko, I., Kitazume, M., Maiko, M., Michihide, U., Yuka, N., Katsuyoshi, M., Toshiro, S., Kazutaka, K., Akira, S., Takanori, K., & Toshifumi, H. (2013). TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn’s disease. Immunology, 139, 19–29.CrossRefGoogle Scholar
  50. Keitel, V., Reinehr, R., Gatsios, P., Rupprecht, C., Görg, B., Selbach, O., Häussinger, D., & Kubitz, R. H. (2007). The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology, 45, 695–704.CrossRefGoogle Scholar
  51. Keitel, V., Gorg, B., Bidmon, H., Zemtsova, I., Spomer, L., Zilles, K., & Haussinger, D. (2010). The bile acid receptor tgr5 (gpbar-1) acts as a neurosteroid receptor in brain. Glia, 58, 1794–1805.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kida, T., Tsubosaka, Y., Hori, M., Ozaki, H., & Murata, T. (2013). Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endotheilal cells. Arteriosclerosis Thrombosis and Vascular Biology, 33, 1663–1669.CrossRefGoogle Scholar
  53. Kumar, D., Senthilkumar, R., Sunila, M., Faridoddin, M., Grider, J., Murthy, K., & Sanyal, A. (2012). Activation of transmembrane bile acid receptor TGR5 stimulates both insulin gene transcription and insulin release in pancreatic b cells. Biochemical and Biophysical Research Communication, 427, 600–605.CrossRefGoogle Scholar
  54. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiology Review, 89, 147–191.CrossRefGoogle Scholar
  55. Li, T., SR, H., Kir, S., Umetani, M., Schmidt, D., Kliewer, S., & Mangelsdorf, D. (2011). The G Protein-coupled bile acid receptor, TGR5, stimulates gallbladder filling. Molecular Endocrinology, 25, 1066–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lieu, T., Jayaweera, G., Zhao, P., Poole, D., Jensen, D., Grace, M., McIntyre, P., Bron, R., Wilson, Y., Krappitz, M., Haerteis, S., Korbmacher, C., Steinhoff, M., Nassini, R., Materazzi, S., Geppetti, P., Corvera, C., & Bunnett, N. (2014). The bile acid receptor TGR5 activates the TRPA1 channel to induce itch in mice. Gastroenterology, 147, 1417–1428.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Liu, W., & Wong, C. (2010). Oleanolic acid is a selective farnesoid X receptor modulator. Phytotherapy Research, 24, 369–373.PubMedCrossRefPubMedCentralGoogle Scholar
  58. MacDonald, P., Sewing, S., Wang, J., Joseph, J., Smukler, S., Wang, J., Monique, C., Catherine, B., Tsushima, R., Salapatek, A., & Wheeler, M. (2002). Inhibition of Kv2.1 voltage-dependent K+channels in pancreatic β-cells enhances glucose-dependent insulin secretion. Journal of Biological Chemistry, 277, 44938–44945.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Maruyama, T., Miyamoto, Y., Nakamura, T., Tamai, Y., Okada, H., Sugiyama, E., Nakamura, T., Itadani, H., & Tanaka, K. (2002). Identification of membrane-type receptor for bile acids (M-BAR). Biochemical and Biophysical Research Communication, 298, 714–719.CrossRefGoogle Scholar
  60. Masyuk, A., Huang, B., Radtke, B., Gajdos, G., Splinter, P., Masyuk, T., Gradilone, S., & LaRusso, N. (2013). Ciliary subcellular localization of TGR5 determines the cholangiocyte functional response to bile acid signaling. American Journal of Physiology: Gastrointestinal and Liver Physiology, 304, G1013–G1024.CrossRefGoogle Scholar
  61. McMillin, M., Gabriel, F., Richard, T., Giuseppina, D., Jenny, S., Hope, S., Newell-Rogers, K., Grant, S., & DeMorrow, S. (2015). TGR5 signaling reduces neuroinflammation during hepatic encephalopathy. Journal of Neurochemistry, 135, 565–576.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Meng, J., Ceryak, S., Aratsu, Z., Jones, L., Epstein, L., & Bouscarel, B. (2006). Biphasic regulation by bile acids of dermal fibroblast proliferation through regulation of cAMP production and COX-2 expression level. American Journal of Physiology; Cell Physiology, 291, C546–C549.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Modica, S., Murzilli, S., Salvatore, L., Schmidt, D., & Moschetta, A. (2008). Nuclear bile acid receptor FXR protects against intestinal tumorigenesis. Cancer Research, 68, 9589–9594.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Mohamed-Sami, T., Sophie, L., Bart, S., & Xavier, C. (2017). Intestinal bile acid receptors are key regulators of glucose homeostasis. Procedings of the Nutrition Society, 76, 192–202.CrossRefGoogle Scholar
  65. Monte, M., Marin, J., Antelo, A., & Vazquez-Tato, J. (2009). Bile acids: Chemistry, physiology, and pathophysiology. World Journal of Gastroenterology, 15, 804–816.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Murthy, K., Zhou, H., Grider, J., & Makhlouf, G. (2003). Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially mediated by phosphorylation of RhoA. Amercan Journal of Physiology; Gastrointestinal Liver Physiology, 284, G1006–G1016.CrossRefGoogle Scholar
  67. Nicholls, D. (2016). The pancreatic -cell: A bioenergetic perspective. Physiology Review, 96, 1385–1447.CrossRefGoogle Scholar
  68. Nierenberg, A., Ghazna, S., Sadora Sande, I., Ellarda, K., Janosa, J., & Sylvia, L. (2018). Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biological Psychiatry, 83(9), 761–769.PubMedCrossRefPubMedCentralGoogle Scholar
  69. Parks, D., Blanchard, S., Bledsoe, R., Chandra, G., Consler, T., Kliewer, S., Stimmel, J., Willson, T., AM, Z., Morre, D., & Lehmann, J. (1999). Bile acids: Natural ligands for an orphan nuclear receptor. Science, 284, 1365–1368.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Patrik, R., Matthias, B., & Zhang, Q. (2012). Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium, 51, 300–308.CrossRefGoogle Scholar
  71. Pellicciari, R., Costantino, G., & Fiorucci, S. (2005). Farnesoid X receptor: From structure to potential clinical applications. Journal of Medcinal Chemistry, 48, 5383–5403.CrossRefGoogle Scholar
  72. Per-Arne, S., Maja, O., CAA, J., Magdalena, T., Pereira, M., Froguel, P., & Jacobson, P. (2013). The TGR5 gene is expressed in human subcutaneous adipose tissue and is associated with obesity, weight loss and resting metabolic rate. Biochemical and Biophysical Research Communication, 433, 563–566.CrossRefGoogle Scholar
  73. Perino, A., Pols, T., Nomura, M., Stein, S., Pellicciari, R., & Schoonjans, K. (2014). TGR5 reduces macrophage migration through mTOR induced C/EBPbeta differential translation. Journal of Clinical Investigation, 124, 5424–5436.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pols, T. (2014). TGR5 in inflammation and cardiovascular disease. Biochemical Society Transactions, 42, 244–249.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pols, T., Nomura, M., Harach, T., Lo Sasso, G., Oosterveer, M., Thomas, C., Rizzo, G., Gioiello, A., Adorini, L., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2011). TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cellular Metabolsim, 14, 747–757.CrossRefGoogle Scholar
  76. Poole, D., Godfrey, C., Cattaruzza, F., Cottrell, G., Kirkland, J., Pelayo, J., Bunnett, N., & Corvera, C. (2010). Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterology and Motility, 22, 814–825.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Proia, R., & Hla, T. (2015). Emerging biology of sphingosine-1-phosphate: Its role in pathogenesis and therapy. Journal of Clinical Investigation, 125, 1379–1387.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Rajagopal, S., Kumar, D., Mahavadi, S., Bhattacharya, S., Zhou, R., Corvera, C., Bunnett, N., JR, G., & KS, M. (2013). Activation of G protein-coupled bile acid receptor, TGR5 induces muscle relaxation via PKA- and Epac mediated inhibition of RhoA/Rho kinase pathway. American Journal of Physiology; Gastrointestinal and Liver Physiology, 304, G527–G535.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Reich, M., Deutschmann, K., Sommerfeld, A., Klindt, C., Kluge, S., Kubitz, R., Ullmer, C., Knoefel, W., Herebian, D., Mayatepek, E., Häussinger, D., & Keitel, V. (2016). TGR5 is essential for bile acid-dependent cholangiocyte proliferation in vivo and in vitro. Gut, 65, 487–501.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Röder, P., Wu, B., Liu, Y., & Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental and Molecular Medicine, 48, e219.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Russell, D. (2003). The enzymes, regulation, and genetics of bile acid synthesis. Annual Review of Biochemistry, 72, 137–174.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Russell, D. (2009). Fifty years of advances in bile acid synthesis and metabolism. Journal of Lipid Research, 50, S120–S125.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sirvent, A., Verhoeven, A., Jansen, H., Vladimir, K., Darteil, R., Hum, D., Jean-Charles, F., & Staels, B. (2004). Farnesoid X receptor represses hepatic lipase gene expression. Journal of Lipid Research, 45, 2110–2115.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Song, C., Hiipakka, R., & Liao, S. (2000). Selective activation of liver X receptor alpha by 6 alpha hydroxy bile acids and analogs. Steroids, 2012, 428139.Google Scholar
  85. Taoufiq, H., Pols, T., Nomura, M., Maida, A., Watanabe, M., Auwerx, J., & Schoonjans, K. (2012). TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Scientific Reports, 2, 430.CrossRefGoogle Scholar
  86. Thomas, C., Gioiello, A., Noriega, L., Strehle, A., Oury, J., Rizzo, G., Macchiarulo, A., Yamamoto, H., Mataki, C., Pruzanski, M., Pellicciari, R., Auwerx, J., & Schoonjans, K. (2009). TGR5-mediated bile acid sensing controls glucose homeostasis. Cellular Metabolsim, 10, 167–177.CrossRefGoogle Scholar
  87. Tiwari, A., & Maiti, P. (2009). TGR5: An emerging bile acid G-protein-coupled receptor target for the potential treatment of metabolic disorders. Drug Discovery Today, 14, 523–530.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Trottier, J., Białek, A., Caron, P., Straka, R., Milkiewicz, P., & Barbier, O. (2011). Profiling Circulating and Urinary Bile Acids in Patients with Biliary Obstruction before and after Biliary Stenting. PLOS One, 6, e22094.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Ulrich, B., Trauner, M., Jansen, P., & Poupon, R. (2015). New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. Journal of Hepatology, 62, S25–S37.CrossRefGoogle Scholar
  90. Wang, H., Chen, J., Hollister, K., Sowers, L., & Forman, B. (1999). Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Molecular and Cellular Biology, 3, 543–553.Google Scholar
  91. Wang, Y., Chen, W., Yu, D., Forman, B., & Huang, W. (2011). The g-protein coupled bile acid receptor, gpbar1 (tgr5), negatively regulates hepati inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated b cells (nf-kappab) in mice. Hepatology, 54, 1421–1432.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yutaka, S., Fukushima, M., & Yabe, D. (2010). GIP and GLP-1, the two incretin hormones: Similarities and differences. Journal of Diabetes Investigation, 1, 8–23.Google Scholar
  93. Zhang, Y., Kast-Woelbern, H., & Edwards, P. (2003). Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. Journal of Biological Chemistry, 278, 101–110.Google Scholar
  94. Zheng, X., Fengjie, H., Aihua, Z., Lei, S., Zhang, Y., Xie, G., Chen, T., Qu, C., Rajani, C., Dong, B., Li, D., & Jia, W. (2017). Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice. BMC Biology, 15, 120.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Senthilkumar Rajagopal
    • 1
  • Murugavel Ponnusamy
    • 2
  1. 1.Department of BiochemistryRayalaseema UniversityKurnoolIndia
  2. 2.Center for Developmental Cardiology, Institute for Translational MedicineQingdao UniversityQingdaoChina

Personalised recommendations