RNA Biology: Methods and Techniques

  • Mansi Arora
  • Deepak Kaul


While numerous small and long non-coding RNAs (ncRNAs) have been discovered in recent years, their cellular functions and modes of action have still not been completely elucidated. Understanding their complex mechanisms of action is fundamental in deciphering their role in both physiological and pathological states of the cells. ncRNAs regulate gene expression at different levels whether transcriptional, post-transcriptional, or epigenetic. They are able to perform a variety of functions due to their ability to base pair with DNA or other RNA species, interact with different proteins, or act as miRNA precursors or competing endogenous RNAs. Here we discuss various experimental approaches used for prediction, screening, and characterization of ncRNAs. We further elaborate the techniques that shed light on the localization and biochemical partners of ncRNAs.


ncRNA structure ncRNA function RNA sequencing RNA-chromatin interaction RNA-protein Interaction 


  1. Abbas Q, Raza SM, Biyabani AA, Jaffar MA (2016) A review of computational methods for finding non-coding RNA genes. Genes 7. Scholar
  2. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762. Scholar
  3. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731. Scholar
  4. Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554. Scholar
  5. Bernard D, Prasanth KV, Tripathi V et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093. Scholar
  6. Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445CrossRefGoogle Scholar
  7. Bida JP, Maher LJ (2012) Improved prediction of RNA tertiary structure with insights into native state dynamics. RNA 18:385–393. Scholar
  8. Bracken CP, Szubert JM, Mercer TR et al (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39:5658–5668. Scholar
  9. Braun J, Misiak D, Busch B, et al (2014) Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification). Nucleic Acids Res 42:e66. doi: Scholar
  10. Brenowitz M, Chance MR, Dhavan G, Takamoto K (2002) Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical “footprinting”. Curr Opin Struct Biol 12:648–653CrossRefGoogle Scholar
  11. Bu D, Yu K, Sun S et al (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40:D210–D215. Scholar
  12. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856. Scholar
  13. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915. Scholar
  14. Cabili MN, Dunagin MC, McClanahan PD et al (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20. Scholar
  15. Cao S, Chen S-J (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115:4216–4226. Scholar
  16. Chaumeil J, Augui S, Chow JC, Heard E (2008) Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol Biol 463:297–308. Scholar
  17. Chu C, Qu K, Zhong FL, et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678. doi: Scholar
  18. Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp.
  19. Chu C, Spitale RC, Chang HY (2015) Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 22:29–35. Scholar
  20. Chureau C, Chantalat S, Romito A et al (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20:705–718. Scholar
  21. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. Scholar
  22. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848. Scholar
  23. Corpet F, Michot B (1994) RNAlign program: alignment of RNA sequences using both primary and secondary structures. Comput Appl Biosci 10:389–399PubMedGoogle Scholar
  24. Creamer TJ, Darby MM, Jamonnak N et al (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7:e1002329. Scholar
  25. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286. Scholar
  26. Das R, Travers KJ, Bai Y, Herschlag D (2005) Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J Am Chem Soc 127:8272–8273. Scholar
  27. Dunagin M, Cabili MN, Rinn J, Raj A (2015) Visualization of lncRNA by single-molecule fluorescence in situ hybridization. Methods Mol Biol 1262:3–19. Scholar
  28. Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973. Scholar
  29. Engreitz JM, Sirokman K, McDonel P et al (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 159:188–199. Scholar
  30. Frellsen J, Moltke I, Thiim M et al (2009) A probabilistic model of RNA conformational space. PLoS Comput Biol 5. Scholar
  31. Fukunaga T, Hamada M (2017) RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach. Bioinformatics 33:2666–2674. Scholar
  32. Furuno M, Pang KC, Ninomiya N et al (2006) Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet 2:e37. Scholar
  33. Gardini A (2017) Global run-on sequencing (GRO-Seq). Methods Mol Biol 1468:111–120. Scholar
  34. Gerlach W, Giegerich R (2006) GUUGle: a utility for fast exact matching under RNA complementary rules including G-U base pairing. Bioinformatics 22:762–764. Scholar
  35. German MA, Pillay M, Jeong D-H et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946. Scholar
  36. Gregory BD, O’Malley RC, Lister R et al (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866. Scholar
  37. Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nat Rev Genet 15:599–612. Scholar
  38. Havgaard JH, Lyngsø RB, Gorodkin J (2005) The foldalign web server for pairwise structural RNA alignment and mutual motif search. Nucleic Acids Res 33:W650–W653. Scholar
  39. He S, Su H, Liu C et al (2008) MicroRNA-encoding long non-coding RNAs. BMC Genomics 9:236. Scholar
  40. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. Scholar
  41. Hofacker L (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431CrossRefGoogle Scholar
  42. Imamachi N, Tani H, Mizutani R et al (2014) BRIC-seq: a genome-wide approach for determining RNA stability in mammalian cells. Methods 67:55–63. Scholar
  43. Islam S, Kjällquist U, Moliner A et al (2012) Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc 7:813–828. Scholar
  44. John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363. Scholar
  45. Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859:3–15. Scholar
  46. Kato Y, Sato K, Hamada M et al (2010) RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming. Bioinformatics 26:i460–i466. Scholar
  47. Kehr S, Bartschat S, Stadler PF, Tafer H (2011) PLEXY: efficient target prediction for box C/D snoRNAs. Bioinformatics 27:279–280. Scholar
  48. Kertesz M (2010) Probing RNA structure genome-wide using high throughput sequencing. Protoc Exch.
  49. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284. Scholar
  50. Kim N-K, Murali A, DeRose VJ (2004) A distance ruler for RNA using EPR and site-directed spin labeling. Chem Biol 11:939–948. Scholar
  51. Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178. Scholar
  52. Knapp G (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol 180:192–212CrossRefGoogle Scholar
  53. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31:3423–3428CrossRefGoogle Scholar
  54. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. Scholar
  55. Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500. Scholar
  56. Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci U S A 108:10010–10015. Scholar
  57. Lai D, Meyer IM (2016) A comprehensive comparison of general RNA–RNA interaction prediction methods. Nucleic Acids Res 44:e61. Scholar
  58. Lee JH, Daugharthy ER, Scheiman J et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–1363. Scholar
  59. Lee JH, Daugharthy ER, Scheiman J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458. Scholar
  60. Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44:863–877. Scholar
  61. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. Scholar
  62. Li J, Ma W, Zeng P et al (2015a) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 16:806–812. Scholar
  63. Li Z, Huang C, Bao C et al (2015b) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264. Scholar
  64. Lilley DMJ (2004) Analysis of global conformational transitions in ribozymes. Methods Mol Biol:77–108Google Scholar
  65. Lipfert J, Doniach S (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36:307–327. Scholar
  66. Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithm Mol Biol 6:26. Scholar
  67. Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL (2016) Predicting RNA secondary structures from sequence and probing data. Methods 103:86–98. Scholar
  68. Luo M-L (2016) Methods to study long noncoding RNA biology in cancer. Adv Exp Med Biol 927:69–107. Scholar
  69. Mann CM, Muppirala UK, Dobbs D (2017) Computational prediction of RNA-protein interactions. Methods Mol Biol 1543:169–185. Scholar
  70. Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13:95–101. Scholar
  71. Martinez HM, Maizel JV, Shapiro BA (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25:669–683. Scholar
  72. McHugh CA, Russell P, Guttman M (2014) Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 15:203. Scholar
  73. McHugh CA, Chen C-K, Chow A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–236. Scholar
  74. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231. Scholar
  75. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217. Scholar
  76. Mückstein U, Tafer H, Hackermüller J et al (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182. Scholar
  77. Nelles DA, Fang MY, Aigner S, Yeo GW (2015) Applications of Cas9 as an RNA-programmed RNA-binding protein. BioEssays News Rev Mol Cell Dev Biol 37:732–739. Scholar
  78. Nelles DA, Fang MY, O’Connell MR et al (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496. Scholar
  79. Novikova IV, Dharap A, Hennelly SP, Sanbonmatsu KY (2013) 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63:170–177. Scholar
  80. O’Connell MR, Oakes BL, Sternberg SH et al (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–266. Scholar
  81. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646. Scholar
  82. Panwar B, Arora A, Raghava GPS (2014) Prediction and classification of ncRNAs using structural information. BMC Genomics 15:127. Scholar
  83. Perez DS, Hoage TR, Pritchett JR et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655. Scholar
  84. Plessy C, Bertin N, Takahashi H et al (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534. Scholar
  85. Polyak K, Riggins GJ (2001) Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol 19:2948–2958. Scholar
  86. Poolsap U, Kato Y, Sato K, Akutsu T (2011) Using binding profiles to predict binding sites of target RNAs. J Bioinforma Comput Biol 9:697–713CrossRefGoogle Scholar
  87. Popenda M, Szachniuk M, Antczak M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:e112. Scholar
  88. Quek XC, Thomson DW, Maag JLV et al (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173. Scholar
  89. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517. Scholar
  90. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinf 11:129. Scholar
  91. RNAcentral Consortium (2015) RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res 43:D123–D129. Scholar
  92. Ryo A, Kondoh N, Wakatsuki T et al (2000) A modified serial analysis of gene expression that generates longer sequence tags by nonpalindromic cohesive linker ligation. Anal Biochem 277:160–162. Scholar
  93. Salehi S, Taheri MN, Azarpira N et al (2017) State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med 21:3120–3140. Scholar
  94. Seemann SE, Richter AS, Gesell T et al (2011) PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences. Bioinformatics 27:211–219. Scholar
  95. Seila AC, Calabrese JM, Levine SS et al (2008) Divergent transcription from active promoters. Science 322:1849–1851. Scholar
  96. Selth LA, Gilbert C, Svejstrup JQ (2009) RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb Protoc 2009. Scholar
  97. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952. Scholar
  98. Shcherbakova I, Mitra S, Beer RH, Brenowitz M (2006) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 34:e48. Scholar
  99. Simon MD (2013) Capture hybridization analysis of RNA targets (CHART). Curr Protoc Mol Biol Chapter 21:Unit 21: 25.
  100. Simon MD, Wang CI, Kharchenko PV et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci 108:20497–20502. Scholar
  101. Spitale RC, Crisalli P, Flynn RA et al (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20. Scholar
  102. Spitzer J, Hafner M, Landthaler M et al (2014) PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol 539:113–161. Scholar
  103. Steffen P, Voss B, Rehmsmeier M et al (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22:500–503. Scholar
  104. Su LJ, Brenowitz M, Pyle AM (2003) An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J Mol Biol 334:639–652CrossRefGoogle Scholar
  105. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663. Scholar
  106. Tafer H, Kehr S, Hertel J et al (2010) RNAsnoop: efficient target prediction for H/ACA snoRNAs. Bioinformatics 26:610–616. Scholar
  107. Takahashi H, Lassmann T, Murata M, Carninci P (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7:542–561. Scholar
  108. Tani H, Mizutani R, Salam KA et al (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:947–956. Scholar
  109. Tjaden B (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res 36:W109–W113. Scholar
  110. Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938. Scholar
  111. Tullius TD, Greenbaum JA (2005) Mapping nucleic acid structure by hydroxyl radical cleavage. Curr Opin Chem Biol 9:127–134. Scholar
  112. Umu SU, Gardner PP (2017) A comprehensive benchmark of RNA–RNA interaction prediction tools for all domains of life. Bioinformatics 33:988–996. Scholar
  113. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487CrossRefGoogle Scholar
  114. Volders P-J, Helsens K, Wang X et al (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41:D246–D251. Scholar
  115. Watters KE, Abbott TR, Lucks JB (2016) Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res 44:e12. Scholar
  116. Wenzel A, Akbaşli E, Gorodkin J (2012) RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics 28:2738–2746. Scholar
  117. West JA, Davis CP, Sunwoo H et al (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802. Scholar
  118. Wright PR, Richter AS, Papenfort K et al (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci U S A 110:E3487–E3496. Scholar
  119. Wu H, Finger LD, Feigon J (2005) Structure determination of protein/RNA complexes by NMR. Methods Enzymol 394:525–545. Scholar
  120. Wu J, Huang H-Y, Hopper AK (2013) A rapid and sensitive non-radioactive method applicable for genome-wide analysis of Saccharomyces cerevisiae genes involved in small RNA biology. Yeast 30:119–128. Scholar
  121. Xia Z, Gardner DP, Gutell RR, Ren P (2010) Coarse-Grained Model for simulation of RNA three-dimensional structures. J Phys Chem B 114:13497–13506. Scholar
  122. Yakhnin AV, Yakhnin H, Babitzke P (2012) Gel mobility shift assays to detect protein-RNA interactions. Methods Mol Biol 905:201–211. Scholar
  123. Yamamoto M, Wakatsuki T, Hada A, Ryo A (2001) Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 250:45–66CrossRefGoogle Scholar
  124. Yan B, Wang Z-H, Guo J-T (2012) The research strategies for probing the function of long noncoding RNAs. Genomics 99:76–80. Scholar
  125. Yan K, Arfat Y, Li D et al (2016) Structure prediction: new insights into decrypting long noncoding RNAs. Int J Mol Sci 17. Scholar
  126. You M, Jaffrey SR (2015) Structure and mechanism of RNA mimics of green fluorescent protein. Annu Rev Biophys 44:187–206. Scholar
  127. Zhang S-W, Fan X-N (2017) Computational methods for predicting ncRNA-protein Interactions. Med Chem 13:515–525. Scholar
  128. Zhang X, Wu D, Chen L et al (2014) RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction. RNA 20:989–993. Scholar
  129. Zhao Y, Huang Y, Gong Z et al (2012) Automated and fast building of three-dimensional RNA structures. Sci Rep 2:734. Scholar
  130. Zimmerman SG, Peters NC, Altaras AE, Berg CA (2013) Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries. Nat Protoc 8:2158–2179. Scholar
  131. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mansi Arora
    • 1
  • Deepak Kaul
    • 1
  1. 1.Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations