Advertisement

RNA Biology: Methods and Techniques

  • Mansi Arora
  • Deepak Kaul
Chapter

Abstract

While numerous small and long non-coding RNAs (ncRNAs) have been discovered in recent years, their cellular functions and modes of action have still not been completely elucidated. Understanding their complex mechanisms of action is fundamental in deciphering their role in both physiological and pathological states of the cells. ncRNAs regulate gene expression at different levels whether transcriptional, post-transcriptional, or epigenetic. They are able to perform a variety of functions due to their ability to base pair with DNA or other RNA species, interact with different proteins, or act as miRNA precursors or competing endogenous RNAs. Here we discuss various experimental approaches used for prediction, screening, and characterization of ncRNAs. We further elaborate the techniques that shed light on the localization and biochemical partners of ncRNAs.

Keywords

ncRNA structure ncRNA function RNA sequencing RNA-chromatin interaction RNA-protein Interaction 

References

  1. Abbas Q, Raza SM, Biyabani AA, Jaffar MA (2016) A review of computational methods for finding non-coding RNA genes. Genes 7.  https://doi.org/10.3390/genes7120113CrossRefGoogle Scholar
  2. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762.  https://doi.org/10.1016/j.cub.2008.04.042CrossRefPubMedPubMedCentralGoogle Scholar
  3. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731.  https://doi.org/10.1038/nrg3293CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bartlett DW, Su H, Hildebrandt IJ et al (2007) Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci U S A 104:15549–15554.  https://doi.org/10.1073/pnas.0707461104CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernard D, Prasanth KV, Tripathi V et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29:3082–3093.  https://doi.org/10.1038/emboj.2010.199CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445CrossRefGoogle Scholar
  7. Bida JP, Maher LJ (2012) Improved prediction of RNA tertiary structure with insights into native state dynamics. RNA 18:385–393.  https://doi.org/10.1261/rna.027201.111CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bracken CP, Szubert JM, Mercer TR et al (2011) Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res 39:5658–5668.  https://doi.org/10.1093/nar/gkr110CrossRefPubMedPubMedCentralGoogle Scholar
  9. Braun J, Misiak D, Busch B, et al (2014) Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification). Nucleic Acids Res 42:e66. doi:  https://doi.org/10.1093/nar/gku127CrossRefGoogle Scholar
  10. Brenowitz M, Chance MR, Dhavan G, Takamoto K (2002) Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical “footprinting”. Curr Opin Struct Biol 12:648–653CrossRefGoogle Scholar
  11. Bu D, Yu K, Sun S et al (2012) NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 40:D210–D215.  https://doi.org/10.1093/nar/gkr1175CrossRefPubMedGoogle Scholar
  12. Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24:2849–2856.  https://doi.org/10.1093/bioinformatics/btn544CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915.  https://doi.org/10.1101/gad.17446611CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cabili MN, Dunagin MC, McClanahan PD et al (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16:20.  https://doi.org/10.1186/s13059-015-0586-4CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cao S, Chen S-J (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115:4216–4226.  https://doi.org/10.1021/jp112059yCrossRefPubMedPubMedCentralGoogle Scholar
  16. Chaumeil J, Augui S, Chow JC, Heard E (2008) Combined immunofluorescence, RNA fluorescent in situ hybridization, and DNA fluorescent in situ hybridization to study chromatin changes, transcriptional activity, nuclear organization, and X-chromosome inactivation. Methods Mol Biol 463:297–308.  https://doi.org/10.1007/978-1-59745-406-3_18CrossRefPubMedGoogle Scholar
  17. Chu C, Qu K, Zhong FL, et al (2011) Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol Cell 44:667–678. doi:  https://doi.org/10.1016/j.molcel.2011.08.027CrossRefGoogle Scholar
  18. Chu C, Quinn J, Chang HY (2012) Chromatin isolation by RNA purification (ChIRP). J Vis Exp.  https://doi.org/10.3791/3912
  19. Chu C, Spitale RC, Chang HY (2015) Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 22:29–35.  https://doi.org/10.1038/nsmb.2921CrossRefPubMedGoogle Scholar
  20. Chureau C, Chantalat S, Romito A et al (2011) Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region. Hum Mol Genet 20:705–718.  https://doi.org/10.1093/hmg/ddq516CrossRefPubMedGoogle Scholar
  21. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13.  https://doi.org/10.1186/s13059-016-0881-8CrossRefPubMedPubMedCentralGoogle Scholar
  22. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848.  https://doi.org/10.1126/science.1162228CrossRefPubMedPubMedCentralGoogle Scholar
  23. Corpet F, Michot B (1994) RNAlign program: alignment of RNA sequences using both primary and secondary structures. Comput Appl Biosci 10:389–399PubMedGoogle Scholar
  24. Creamer TJ, Darby MM, Jamonnak N et al (2011) Transcriptome-wide binding sites for components of the Saccharomyces cerevisiae non-poly(A) termination pathway: Nrd1, Nab3, and Sen1. PLoS Genet 7:e1002329.  https://doi.org/10.1371/journal.pgen.1002329CrossRefPubMedPubMedCentralGoogle Scholar
  25. Darnell RB (2010) HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA 1:266–286.  https://doi.org/10.1002/wrna.31CrossRefPubMedPubMedCentralGoogle Scholar
  26. Das R, Travers KJ, Bai Y, Herschlag D (2005) Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J Am Chem Soc 127:8272–8273.  https://doi.org/10.1021/ja051422hCrossRefPubMedPubMedCentralGoogle Scholar
  27. Dunagin M, Cabili MN, Rinn J, Raj A (2015) Visualization of lncRNA by single-molecule fluorescence in situ hybridization. Methods Mol Biol 1262:3–19.  https://doi.org/10.1007/978-1-4939-2253-6_1CrossRefPubMedGoogle Scholar
  28. Engreitz JM, Pandya-Jones A, McDonel P et al (2013) The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973.  https://doi.org/10.1126/science.1237973CrossRefPubMedPubMedCentralGoogle Scholar
  29. Engreitz JM, Sirokman K, McDonel P et al (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 159:188–199.  https://doi.org/10.1016/j.cell.2014.08.018CrossRefPubMedPubMedCentralGoogle Scholar
  30. Frellsen J, Moltke I, Thiim M et al (2009) A probabilistic model of RNA conformational space. PLoS Comput Biol 5.  https://doi.org/10.1371/journal.pcbi.1000406CrossRefGoogle Scholar
  31. Fukunaga T, Hamada M (2017) RIblast: an ultrafast RNA-RNA interaction prediction system based on a seed-and-extension approach. Bioinformatics 33:2666–2674.  https://doi.org/10.1093/bioinformatics/btx287CrossRefPubMedPubMedCentralGoogle Scholar
  32. Furuno M, Pang KC, Ninomiya N et al (2006) Clusters of internally primed transcripts reveal novel long noncoding RNAs. PLoS Genet 2:e37.  https://doi.org/10.1371/journal.pgen.0020037CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gardini A (2017) Global run-on sequencing (GRO-Seq). Methods Mol Biol 1468:111–120.  https://doi.org/10.1007/978-1-4939-4035-6_9CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gerlach W, Giegerich R (2006) GUUGle: a utility for fast exact matching under RNA complementary rules including G-U base pairing. Bioinformatics 22:762–764.  https://doi.org/10.1093/bioinformatics/btk041CrossRefPubMedGoogle Scholar
  35. German MA, Pillay M, Jeong D-H et al (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26:941–946.  https://doi.org/10.1038/nbt1417CrossRefPubMedGoogle Scholar
  36. Gregory BD, O’Malley RC, Lister R et al (2008) A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell 14:854–866.  https://doi.org/10.1016/j.devcel.2008.04.005CrossRefPubMedGoogle Scholar
  37. Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nat Rev Genet 15:599–612.  https://doi.org/10.1038/nrg3765CrossRefPubMedGoogle Scholar
  38. Havgaard JH, Lyngsø RB, Gorodkin J (2005) The foldalign web server for pairwise structural RNA alignment and mutual motif search. Nucleic Acids Res 33:W650–W653.  https://doi.org/10.1093/nar/gki473CrossRefPubMedPubMedCentralGoogle Scholar
  39. He S, Su H, Liu C et al (2008) MicroRNA-encoding long non-coding RNAs. BMC Genomics 9:236.  https://doi.org/10.1186/1471-2164-9-236CrossRefPubMedPubMedCentralGoogle Scholar
  40. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665.  https://doi.org/10.1016/j.cell.2013.03.043CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hofacker L (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31(13):3429–3431CrossRefGoogle Scholar
  42. Imamachi N, Tani H, Mizutani R et al (2014) BRIC-seq: a genome-wide approach for determining RNA stability in mammalian cells. Methods 67:55–63.  https://doi.org/10.1016/j.ymeth.2013.07.014CrossRefPubMedGoogle Scholar
  43. Islam S, Kjällquist U, Moliner A et al (2012) Highly multiplexed and strand-specific single-cell RNA 5′ end sequencing. Nat Protoc 7:813–828.  https://doi.org/10.1038/nprot.2012.022CrossRefPubMedGoogle Scholar
  44. John B, Enright AJ, Aravin A et al (2004) Human MicroRNA targets. PLoS Biol 2:e363.  https://doi.org/10.1371/journal.pbio.0020363CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859:3–15.  https://doi.org/10.1016/j.bbagrm.2015.10.010CrossRefPubMedGoogle Scholar
  46. Kato Y, Sato K, Hamada M et al (2010) RactIP: fast and accurate prediction of RNA-RNA interaction using integer programming. Bioinformatics 26:i460–i466.  https://doi.org/10.1093/bioinformatics/btq372CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kehr S, Bartschat S, Stadler PF, Tafer H (2011) PLEXY: efficient target prediction for box C/D snoRNAs. Bioinformatics 27:279–280.  https://doi.org/10.1093/bioinformatics/btq642CrossRefPubMedGoogle Scholar
  48. Kertesz M (2010) Probing RNA structure genome-wide using high throughput sequencing. Protoc Exch.  https://doi.org/10.1038/nprot.2010.152
  49. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284.  https://doi.org/10.1038/ng2135CrossRefPubMedGoogle Scholar
  50. Kim N-K, Murali A, DeRose VJ (2004) A distance ruler for RNA using EPR and site-directed spin labeling. Chem Biol 11:939–948.  https://doi.org/10.1016/j.chembiol.2004.04.013CrossRefPubMedGoogle Scholar
  51. Kiriakidou M, Nelson PT, Kouranov A et al (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178.  https://doi.org/10.1101/gad.1184704CrossRefPubMedPubMedCentralGoogle Scholar
  52. Knapp G (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol 180:192–212CrossRefGoogle Scholar
  53. Knudsen B, Hein J (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res 31:3423–3428CrossRefGoogle Scholar
  54. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73.  https://doi.org/10.1093/nar/gkt1181CrossRefPubMedGoogle Scholar
  55. Krek A, Grün D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500.  https://doi.org/10.1038/ng1536CrossRefPubMedGoogle Scholar
  56. Kudla G, Granneman S, Hahn D et al (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Natl Acad Sci U S A 108:10010–10015.  https://doi.org/10.1073/pnas.1017386108CrossRefPubMedPubMedCentralGoogle Scholar
  57. Lai D, Meyer IM (2016) A comprehensive comparison of general RNA–RNA interaction prediction methods. Nucleic Acids Res 44:e61.  https://doi.org/10.1093/nar/gkv1477CrossRefPubMedGoogle Scholar
  58. Lee JH, Daugharthy ER, Scheiman J et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–1363.  https://doi.org/10.1126/science.1250212CrossRefPubMedPubMedCentralGoogle Scholar
  59. Lee JH, Daugharthy ER, Scheiman J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458.  https://doi.org/10.1038/nprot.2014.191CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44:863–877.  https://doi.org/10.1093/nar/gkv1206CrossRefPubMedGoogle Scholar
  61. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20.  https://doi.org/10.1016/j.cell.2004.12.035CrossRefPubMedPubMedCentralGoogle Scholar
  62. Li J, Ma W, Zeng P et al (2015a) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 16:806–812.  https://doi.org/10.1093/bib/bbu048CrossRefPubMedGoogle Scholar
  63. Li Z, Huang C, Bao C et al (2015b) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264.  https://doi.org/10.1038/nsmb.2959CrossRefPubMedGoogle Scholar
  64. Lilley DMJ (2004) Analysis of global conformational transitions in ribozymes. Methods Mol Biol:77–108Google Scholar
  65. Lipfert J, Doniach S (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36:307–327.  https://doi.org/10.1146/annurev.biophys.36.040306.132655CrossRefPubMedGoogle Scholar
  66. Lorenz R, Bernhart SH, Höner Zu Siederdissen C et al (2011) ViennaRNA package 2.0. Algorithm Mol Biol 6:26.  https://doi.org/10.1186/1748-7188-6-26CrossRefGoogle Scholar
  67. Lorenz R, Wolfinger MT, Tanzer A, Hofacker IL (2016) Predicting RNA secondary structures from sequence and probing data. Methods 103:86–98.  https://doi.org/10.1016/j.ymeth.2016.04.004CrossRefPubMedGoogle Scholar
  68. Luo M-L (2016) Methods to study long noncoding RNA biology in cancer. Adv Exp Med Biol 927:69–107.  https://doi.org/10.1007/978-981-10-1498-7_3CrossRefPubMedGoogle Scholar
  69. Mann CM, Muppirala UK, Dobbs D (2017) Computational prediction of RNA-protein interactions. Methods Mol Biol 1543:169–185.  https://doi.org/10.1007/978-1-4939-6716-2_8CrossRefPubMedGoogle Scholar
  70. Mao YS, Sunwoo H, Zhang B, Spector DL (2011) Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat Cell Biol 13:95–101.  https://doi.org/10.1038/ncb2140CrossRefPubMedGoogle Scholar
  71. Martinez HM, Maizel JV, Shapiro BA (2008) RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. J Biomol Struct Dyn 25:669–683.  https://doi.org/10.1080/07391102.2008.10531240CrossRefPubMedPubMedCentralGoogle Scholar
  72. McHugh CA, Russell P, Guttman M (2014) Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol 15:203.  https://doi.org/10.1186/gb4152CrossRefPubMedPubMedCentralGoogle Scholar
  73. McHugh CA, Chen C-K, Chow A et al (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–236.  https://doi.org/10.1038/nature14443CrossRefPubMedPubMedCentralGoogle Scholar
  74. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231.  https://doi.org/10.1021/ja043822vCrossRefPubMedGoogle Scholar
  75. Miranda KC, Huynh T, Tay Y et al (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217.  https://doi.org/10.1016/j.cell.2006.07.031CrossRefPubMedGoogle Scholar
  76. Mückstein U, Tafer H, Hackermüller J et al (2006) Thermodynamics of RNA-RNA binding. Bioinformatics 22:1177–1182.  https://doi.org/10.1093/bioinformatics/btl024CrossRefPubMedGoogle Scholar
  77. Nelles DA, Fang MY, Aigner S, Yeo GW (2015) Applications of Cas9 as an RNA-programmed RNA-binding protein. BioEssays News Rev Mol Cell Dev Biol 37:732–739.  https://doi.org/10.1002/bies.201500001CrossRefGoogle Scholar
  78. Nelles DA, Fang MY, O’Connell MR et al (2016) Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165:488–496.  https://doi.org/10.1016/j.cell.2016.02.054CrossRefPubMedPubMedCentralGoogle Scholar
  79. Novikova IV, Dharap A, Hennelly SP, Sanbonmatsu KY (2013) 3S: shotgun secondary structure determination of long non-coding RNAs. Methods 63:170–177.  https://doi.org/10.1016/j.ymeth.2013.07.030CrossRefPubMedGoogle Scholar
  80. O’Connell MR, Oakes BL, Sternberg SH et al (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–266.  https://doi.org/10.1038/nature13769CrossRefPubMedPubMedCentralGoogle Scholar
  81. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646.  https://doi.org/10.1126/science.1207339CrossRefPubMedPubMedCentralGoogle Scholar
  82. Panwar B, Arora A, Raghava GPS (2014) Prediction and classification of ncRNAs using structural information. BMC Genomics 15:127.  https://doi.org/10.1186/1471-2164-15-127CrossRefPubMedPubMedCentralGoogle Scholar
  83. Perez DS, Hoage TR, Pritchett JR et al (2008) Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet 17:642–655.  https://doi.org/10.1093/hmg/ddm336CrossRefPubMedGoogle Scholar
  84. Plessy C, Bertin N, Takahashi H et al (2010) Linking promoters to functional transcripts in small samples with nanoCAGE and CAGEscan. Nat Methods 7:528–534.  https://doi.org/10.1038/nmeth.1470CrossRefPubMedPubMedCentralGoogle Scholar
  85. Polyak K, Riggins GJ (2001) Gene discovery using the serial analysis of gene expression technique: implications for cancer research. J Clin Oncol 19:2948–2958.  https://doi.org/10.1200/JCO.2001.19.11.2948CrossRefPubMedGoogle Scholar
  86. Poolsap U, Kato Y, Sato K, Akutsu T (2011) Using binding profiles to predict binding sites of target RNAs. J Bioinforma Comput Biol 9:697–713CrossRefGoogle Scholar
  87. Popenda M, Szachniuk M, Antczak M et al (2012) Automated 3D structure composition for large RNAs. Nucleic Acids Res 40:e112.  https://doi.org/10.1093/nar/gks339CrossRefPubMedPubMedCentralGoogle Scholar
  88. Quek XC, Thomson DW, Maag JLV et al (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173.  https://doi.org/10.1093/nar/gku988CrossRefPubMedGoogle Scholar
  89. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517.  https://doi.org/10.1261/rna.5248604CrossRefPubMedPubMedCentralGoogle Scholar
  90. Reuter JS, Mathews DH (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinf 11:129.  https://doi.org/10.1186/1471-2105-11-129CrossRefGoogle Scholar
  91. RNAcentral Consortium (2015) RNAcentral: an international database of ncRNA sequences. Nucleic Acids Res 43:D123–D129.  https://doi.org/10.1093/nar/gku991CrossRefGoogle Scholar
  92. Ryo A, Kondoh N, Wakatsuki T et al (2000) A modified serial analysis of gene expression that generates longer sequence tags by nonpalindromic cohesive linker ligation. Anal Biochem 277:160–162.  https://doi.org/10.1006/abio.1999.4399CrossRefPubMedGoogle Scholar
  93. Salehi S, Taheri MN, Azarpira N et al (2017) State of the art technologies to explore long non-coding RNAs in cancer. J Cell Mol Med 21:3120–3140.  https://doi.org/10.1111/jcmm.13238CrossRefPubMedPubMedCentralGoogle Scholar
  94. Seemann SE, Richter AS, Gesell T et al (2011) PETcofold: predicting conserved interactions and structures of two multiple alignments of RNA sequences. Bioinformatics 27:211–219.  https://doi.org/10.1093/bioinformatics/btq634CrossRefPubMedGoogle Scholar
  95. Seila AC, Calabrese JM, Levine SS et al (2008) Divergent transcription from active promoters. Science 322:1849–1851.  https://doi.org/10.1126/science.1162253CrossRefPubMedPubMedCentralGoogle Scholar
  96. Selth LA, Gilbert C, Svejstrup JQ (2009) RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb Protoc 2009.  https://doi.org/10.1101/pdb.prot5234CrossRefGoogle Scholar
  97. Sharma S, Ding F, Dokholyan NV (2008) iFoldRNA: three-dimensional RNA structure prediction and folding. Bioinformatics 24:1951–1952.  https://doi.org/10.1093/bioinformatics/btn328CrossRefPubMedPubMedCentralGoogle Scholar
  98. Shcherbakova I, Mitra S, Beer RH, Brenowitz M (2006) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 34:e48.  https://doi.org/10.1093/nar/gkl055CrossRefPubMedPubMedCentralGoogle Scholar
  99. Simon MD (2013) Capture hybridization analysis of RNA targets (CHART). Curr Protoc Mol Biol Chapter 21:Unit 21: 25.  https://doi.org/10.1002/0471142727.mb2125s101
  100. Simon MD, Wang CI, Kharchenko PV et al (2011) The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci 108:20497–20502.  https://doi.org/10.1073/pnas.1113536108CrossRefPubMedGoogle Scholar
  101. Spitale RC, Crisalli P, Flynn RA et al (2013) RNA SHAPE analysis in living cells. Nat Chem Biol 9:18–20.  https://doi.org/10.1038/nchembio.1131CrossRefPubMedGoogle Scholar
  102. Spitzer J, Hafner M, Landthaler M et al (2014) PAR-CLIP (photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol 539:113–161.  https://doi.org/10.1016/B978-0-12-420120-0.00008-6CrossRefPubMedPubMedCentralGoogle Scholar
  103. Steffen P, Voss B, Rehmsmeier M et al (2006) RNAshapes: an integrated RNA analysis package based on abstract shapes. Bioinformatics 22:500–503.  https://doi.org/10.1093/bioinformatics/btk010CrossRefPubMedGoogle Scholar
  104. Su LJ, Brenowitz M, Pyle AM (2003) An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme. J Mol Biol 334:639–652CrossRefGoogle Scholar
  105. Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663.  https://doi.org/10.1093/bioinformatics/btn193CrossRefPubMedGoogle Scholar
  106. Tafer H, Kehr S, Hertel J et al (2010) RNAsnoop: efficient target prediction for H/ACA snoRNAs. Bioinformatics 26:610–616.  https://doi.org/10.1093/bioinformatics/btp680CrossRefPubMedGoogle Scholar
  107. Takahashi H, Lassmann T, Murata M, Carninci P (2012) 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc 7:542–561.  https://doi.org/10.1038/nprot.2012.005CrossRefPubMedPubMedCentralGoogle Scholar
  108. Tani H, Mizutani R, Salam KA et al (2012) Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res 22:947–956.  https://doi.org/10.1101/gr.130559.111CrossRefPubMedPubMedCentralGoogle Scholar
  109. Tjaden B (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res 36:W109–W113.  https://doi.org/10.1093/nar/gkn264CrossRefPubMedPubMedCentralGoogle Scholar
  110. Tripathi V, Ellis JD, Shen Z et al (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938.  https://doi.org/10.1016/j.molcel.2010.08.011CrossRefPubMedPubMedCentralGoogle Scholar
  111. Tullius TD, Greenbaum JA (2005) Mapping nucleic acid structure by hydroxyl radical cleavage. Curr Opin Chem Biol 9:127–134.  https://doi.org/10.1016/j.cbpa.2005.02.009CrossRefPubMedGoogle Scholar
  112. Umu SU, Gardner PP (2017) A comprehensive benchmark of RNA–RNA interaction prediction tools for all domains of life. Bioinformatics 33:988–996.  https://doi.org/10.1093/bioinformatics/btw728CrossRefPubMedGoogle Scholar
  113. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487CrossRefGoogle Scholar
  114. Volders P-J, Helsens K, Wang X et al (2013) LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 41:D246–D251.  https://doi.org/10.1093/nar/gks915CrossRefPubMedGoogle Scholar
  115. Watters KE, Abbott TR, Lucks JB (2016) Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res 44:e12.  https://doi.org/10.1093/nar/gkv879CrossRefPubMedGoogle Scholar
  116. Wenzel A, Akbaşli E, Gorodkin J (2012) RIsearch: fast RNA–RNA interaction search using a simplified nearest-neighbor energy model. Bioinformatics 28:2738–2746.  https://doi.org/10.1093/bioinformatics/bts519CrossRefPubMedPubMedCentralGoogle Scholar
  117. West JA, Davis CP, Sunwoo H et al (2014) The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell 55:791–802.  https://doi.org/10.1016/j.molcel.2014.07.012CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wright PR, Richter AS, Papenfort K et al (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc Natl Acad Sci U S A 110:E3487–E3496.  https://doi.org/10.1073/pnas.1303248110CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wu H, Finger LD, Feigon J (2005) Structure determination of protein/RNA complexes by NMR. Methods Enzymol 394:525–545.  https://doi.org/10.1016/S0076-6879(05)94022-6CrossRefPubMedGoogle Scholar
  120. Wu J, Huang H-Y, Hopper AK (2013) A rapid and sensitive non-radioactive method applicable for genome-wide analysis of Saccharomyces cerevisiae genes involved in small RNA biology. Yeast 30:119–128.  https://doi.org/10.1002/yea.2947CrossRefPubMedPubMedCentralGoogle Scholar
  121. Xia Z, Gardner DP, Gutell RR, Ren P (2010) Coarse-Grained Model for simulation of RNA three-dimensional structures. J Phys Chem B 114:13497–13506.  https://doi.org/10.1021/jp104926tCrossRefPubMedPubMedCentralGoogle Scholar
  122. Yakhnin AV, Yakhnin H, Babitzke P (2012) Gel mobility shift assays to detect protein-RNA interactions. Methods Mol Biol 905:201–211.  https://doi.org/10.1007/978-1-61779-949-5_12CrossRefPubMedPubMedCentralGoogle Scholar
  123. Yamamoto M, Wakatsuki T, Hada A, Ryo A (2001) Use of serial analysis of gene expression (SAGE) technology. J Immunol Methods 250:45–66CrossRefGoogle Scholar
  124. Yan B, Wang Z-H, Guo J-T (2012) The research strategies for probing the function of long noncoding RNAs. Genomics 99:76–80.  https://doi.org/10.1016/j.ygeno.2011.12.002CrossRefPubMedGoogle Scholar
  125. Yan K, Arfat Y, Li D et al (2016) Structure prediction: new insights into decrypting long noncoding RNAs. Int J Mol Sci 17.  https://doi.org/10.3390/ijms17010132CrossRefGoogle Scholar
  126. You M, Jaffrey SR (2015) Structure and mechanism of RNA mimics of green fluorescent protein. Annu Rev Biophys 44:187–206.  https://doi.org/10.1146/annurev-biophys-060414-033954CrossRefPubMedGoogle Scholar
  127. Zhang S-W, Fan X-N (2017) Computational methods for predicting ncRNA-protein Interactions. Med Chem 13:515–525.  https://doi.org/10.2174/1573406413666170510102405CrossRefPubMedGoogle Scholar
  128. Zhang X, Wu D, Chen L et al (2014) RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction. RNA 20:989–993.  https://doi.org/10.1261/rna.044776.114CrossRefPubMedPubMedCentralGoogle Scholar
  129. Zhao Y, Huang Y, Gong Z et al (2012) Automated and fast building of three-dimensional RNA structures. Sci Rep 2:734.  https://doi.org/10.1038/srep00734CrossRefPubMedPubMedCentralGoogle Scholar
  130. Zimmerman SG, Peters NC, Altaras AE, Berg CA (2013) Optimized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH) in Drosophila ovaries. Nat Protoc 8:2158–2179.  https://doi.org/10.1038/nprot.2013.136CrossRefPubMedPubMedCentralGoogle Scholar
  131. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mansi Arora
    • 1
  • Deepak Kaul
    • 1
  1. 1.Department of Experimental Medicine and BiotechnologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations