Advertisement

Advanced In Silico Tools for Designing of Antigenic Epitope as Potential Vaccine Candidates Against Coronavirus

  • Mehak Dangi
  • Rinku Kumari
  • Bharat Singh
  • Anil Kumar Chhillar
Chapter

Abstract

Vaccines are the most economical and potent substitute of available medicines to cure various bacterial and viral diseases. Earlier, killed or attenuated pathogens were employed for vaccine development. But in present era, the peptide vaccines are in much trend and are favoured over whole vaccines because of their superiority over conventional vaccines. These vaccines are either based on single proteins or on synthetic peptides including several B-cell and T-cell epitopes. However, the overall mechanism of action remains the same and works by prompting the immune system to activate the specific B-cell- and T-cell-mediated responses against the pathogen. Rino Rappuoli and others have contributed in this field by plotting the design of the most potent and fully computational approach for discovery of potential vaccine candidates which is popular as reverse vaccinology. This is quite an unambiguous advance for vaccine evolution where one begins with the genome information of the pathogen and ends up with the list of certain epitopes after application of multiple bioinformatics tools. This book chapter is an effort to bring this approach of reverse vaccinology into notice of readers using example of coronavirus.

Keywords

In silico Reverse vaccinology T-cell epitopes B-cell epitopes Coronavirus 

References

  1. Alessandro S, Rino R (2010) Review: reverse vaccinology: developing vaccines in the era of genomics. Immunity 33:530–541.  https://doi.org/10.1016/j.immuni.2010.09.017 CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefGoogle Scholar
  3. Azhar EI, Lanini S, Ippolito G, Zumla A (2017) The Middle East respiratory syndrome coronavirus – a continuing risk to global health security. Adv Exp Med Biol 972:49–60.  https://doi.org/10.1007/5584_2016_133.PMID:27966107 CrossRefPubMedGoogle Scholar
  4. Bouvier M, Guo HC, Smith KJ, Wiley DC (1998) Crystal structures of HLA-A*0201 complexed with antigenic peptides with either the amino- or carboxyl-terminal group substituted by a methyl group. Proteins Struct Funct Genet 33(1):97–106. PMID: 9741848CrossRefGoogle Scholar
  5. Bradley P, Cowen L, Menke M, King J, Berger B (2001) BETAWRAP: successful prediction of parallel beta -helices from primary sequence reveals an association with many microbial pathogens. Proc Natl Acad Sci U S A 98(26):14819–14824.  https://doi.org/10.1073/pnas.251267298 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brown JK, Fauquet CM, Briddon RW, Zerbini M, Moriones E, Navas-Castillo J, King AM, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Geminiviridae. In: Virus taxonomy—ninth report of the International Committee on Taxonomy of Viruses. Elsevier Science, Burlington, pp 351–373Google Scholar
  7. Bruno L, Cortese M, Rappuoli R, Merola M (2015) Lessons from Reverse Vaccinology for viral vaccine design. Curr Opin Virol 11:89–97.  https://doi.org/10.1016/j.coviro.2015.03.001 CrossRefPubMedGoogle Scholar
  8. Caro-Gomez E, Gazi M, Goez Y, Valbuena G (2014) Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine 32(39):4968–4976.  https://doi.org/10.1016/j.vaccine.2014.06.089 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chiang MH, Sung WC, Lien SP, Chen YZ, Lo AF, Huang JH, Kuo SC, Chong P (2015) Identification of novel vaccine candidates against Acinetobacter baumannii using reverse vaccinology. Hum Vaccin Immunother 11(4):1065–1073.  https://doi.org/10.1080/21645515.2015.1010910 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004a) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32(suppl_2):W96–W99.  https://doi.org/10.1093/nar/gkh354 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004b) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20(1):45–50.  https://doi.org/10.1093/bioinformatics/btg371 CrossRefPubMedGoogle Scholar
  12. De Groot RJ, Baker SC, Baric RS et al (2013) Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol 87(14):7790–7792.  https://doi.org/10.1128/JVI.01244-13 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dimitrov I, Bangov I, Flower DR, Doytchinova I (2014) AllerTOP v.2-a server for in silico prediction of allergens. J Mol Model BioMed Central Ltd 20(6):227. DOI:  https://doi.org/10.1007/s00894-014-2278-5
  14. Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinf 8(1):4.  https://doi.org/10.1186/1471-2105-8-4 CrossRefGoogle Scholar
  15. Frank K, Sippl MJ (2008) High performance signal peptide prediction based on sequence alignment techniques. Bioinformatics 24:2172–2176.  https://doi.org/10.1093/bioinformatics/btn422 CrossRefPubMedGoogle Scholar
  16. Gabutti G (2014) Meningococcus B: control of two outbreaks by vaccination. J Prev Med Hyg 55(2):35–41. PMCID: PMC4718325Google Scholar
  17. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. Proteomics Protoc Handb:571–607.  https://doi.org/10.1385/1-59259-890-0:571 CrossRefGoogle Scholar
  18. Golosova O, Henderson R, Vaskin Y, Gabrielian A, Grekhov G, Nagarajan V, Oler AJ, Quiñones M, Hurt D, Fursov M, Huyen Y (2014) Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. Peer J 2:e644.  https://doi.org/10.7717/peerj.644 CrossRefPubMedGoogle Scholar
  19. Goodswen SJ, Kennedy PJ, Ellis JT (2014) Discovering a vaccine against neosporosis using computers: is it feasible? Trends Parasitol 30(8):401–411.  https://doi.org/10.1016/j.pt.2014.06.004 CrossRefPubMedGoogle Scholar
  20. Guimarães L, Soares S, Trost E, Blom J, Ramos R, Silva A, Barh D, Azevedo V (2015) Genome informatics and vaccine targets in Corynebacterium urealyticum using two whole genomes, comparative genomics, and reverse vaccinology. BMC Genomics 16(Suppl 5):S7.  https://doi.org/10.1186/1471-2164-16-S5-S7 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kanampalliwar AM, Soni R, Tiwari A, Giridhar A (2013) Reverse vaccinology: basics and applications. J Vaccin Vaccin 4(6):194–198.  https://doi.org/10.4172/2157-7560.1000194 CrossRefGoogle Scholar
  22. Kaur H, Garg A, Raghava GPS (2007) PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept Lett 14:626–630.  https://doi.org/10.2174/092986607781483859 CrossRefPubMedGoogle Scholar
  23. Kelly DF, Rappuoli R (2005) Reverse vaccinology and vaccines for serogroup B Neisseria meningitidis. Adv Exp Med Biol 568:217–223CrossRefGoogle Scholar
  24. Kolesanova EF, Sobolev BN, Moysa AA, Egorova EA, Archakov AI (2015) Way to the peptide vaccine against hepatitis C. Biomed Khim 61(2):254–264.  https://doi.org/10.18097/PBMC20156102254 CrossRefPubMedGoogle Scholar
  25. Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pair wise potentials. Proteins 65(2):392–406.  https://doi.org/10.1002/prot.21117 CrossRefPubMedGoogle Scholar
  26. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278CrossRefGoogle Scholar
  27. Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580.  https://doi.org/10.1006/jmbi.2000.4315 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M (2005) An integrative approach to CTL epitope prediction, a combined algorithm integrating MHC-I binding, TAP transport efficiency, and proteasomal cleavage prediction. J Immunol 35:2295–2303.  https://doi.org/10.1002/eji.200425811 CrossRefGoogle Scholar
  29. Larsen JEP, Lund O, Nielsen M (2006) Improved method for predicting linear B-cell epitopes. Immunome Res 2(1):2.  https://doi.org/10.1186/1745-7580-2-2 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC (2006) The genomes on line database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res 34:D332–D334.  https://doi.org/10.1093/nar/gkj145 CrossRefPubMedGoogle Scholar
  31. Monterrubio-López GP, González-Y-Merchand JA, Ribas-Aparicio RM (2015) Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. Biomed Res Int 2015:483150.  https://doi.org/10.1155/2015/483150 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Naz A, Awan FM, Obaid A, Muhammad SA, Paracha RZ, Ahmad J, Ali A (2015) Identification of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: a reverse vaccinology based approach. Infect Genet Evol 32:280–291.  https://doi.org/10.1016/j.meegid.2015.03.027 CrossRefPubMedGoogle Scholar
  33. NCBI Resource Coordinators (2017) Database resources of the national center for biotechnology information. Nucleic Acids Res 45(D1):D12–D17.  https://doi.org/10.1093/nar/gkw1071 CrossRefGoogle Scholar
  34. Okonechnikov K, Golosova O, Fursov M, UGENE team (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167.  https://doi.org/10.1093/bioinformatics/bts091 CrossRefPubMedGoogle Scholar
  35. Parker KC, Bednarek MA, Coligan JE (1994) Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152(1):163–75. PMID: 8254189Google Scholar
  36. Pickett BE, Greer DS, Zhang Y, Stewart L, Zhou L, Sun G et al (2012) Virus pathogen database and analysis resource (ViPR): a comprehensive bioinformatics database and analysis resource for the coronavirus research community. Viruses 11:3209–3226.  https://doi.org/10.3390/v4113209 CrossRefGoogle Scholar
  37. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820.  https://doi.org/10.1126/science.287.5459.1816 CrossRefPubMedGoogle Scholar
  38. Rappuoli R (2000) Reverse vaccinology. Curr Opin Microbiol 3:445–450.  https://doi.org/10.1016/S1369-5274(00)00119-3 CrossRefPubMedGoogle Scholar
  39. Sachdeva G, Kumar K, Preti J, Ramachandran S (2004) SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21:483–491.  https://doi.org/10.1093/bioinformatics/bti028 CrossRefPubMedGoogle Scholar
  40. Saha S, Raghava GPS (2006a) AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 34:W202–W209.  https://doi.org/10.1093/nar/gkl343 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Saha S, Raghava GPS (2006b) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48.  https://doi.org/10.1002/prot.21078 CrossRefPubMedGoogle Scholar
  42. Sette A, Rappuoli R (2010) Reverse vaccinology: developing vaccines in the era of genomics. Immunity 33(4):530–541.  https://doi.org/10.1016/j.immuni.2010.09.017 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shen H-B, Chou K-C (2010) Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. J Biomol Struct Dyn 28:175–186.  https://doi.org/10.1080/07391102.2010.10507351 CrossRefPubMedGoogle Scholar
  44. Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC class-I binding sites. Bioinformatics 19(8):1009–1014.  https://doi.org/10.1093/bioinformatics/btg108 CrossRefPubMedGoogle Scholar
  45. Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J (2017) Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. Infect Genet Evol 55:151–158CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mehak Dangi
    • 1
    • 2
  • Rinku Kumari
    • 1
  • Bharat Singh
    • 2
  • Anil Kumar Chhillar
    • 2
  1. 1.Centre for BioinformaticsMaharshi Dayanand UniversityRohtakIndia
  2. 2.Centre for BiotechnologyMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations