Advertisement

Lactic Acid Bacteria and Foodborne Pathogens

  • Arjan NarbadEmail author
  • Gang Wang
Chapter

Abstract

Foodborne pathogens are microorganisms which are capable of infecting humans via consumption of contaminated food or water, especially ready-to-eat products. The disease burden caused by foodborne pathogens has become a global public concern. Traditional technologies to reduce the foodborne pathogens includes preservative, refrigeration and pasteurization. In recent decades, probiotics showed emerging bacteriostatic and antifungal activity on different pathogens. This chapter discussed the trends of foodborne pathogens in the food-chain and the strategies for preventing and controlling food-borne diseases by lactic acid bacteria. The main mechanisms of the antagonism have been expounded, such as producing antibacterial substances, effect of competition and repulsion, adhesion barrier and immunomodulatory effects. Adjunctive application of prebiotics has also been described in this chapter, focusing on the physiological functions of promoting the growth of beneficial bacteria, adjusting the balance of intestinal flora and inhibiting the growth of pathogenic bacteria. In addition, the application of probiotics for graziery has also been depicted.

Keywords

Probiotics Foodborne pathogens Prebiotics Disease control 

References

  1. Abbaszadeh, S., A. Sharifzadeh, H. Shokri, et al. 2014. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. Journal de Mycologie Médicale/Journal of Medical Mycology 24 (2): e51–e56.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Alakomi, H.-L., E. Skytta, M. Saarela, and T. Mattila-Sandholm. 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology 66 (5): 2001–2005.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alfredson, D.A., and V. Korolik. 2007. Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiology Letters 277 (2): 123–132.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alokail, Majed S., Shaun Sabico, and Yousef Al-Saleh. 2013. Effects of probiotics in patients with diabetes mellitus type 2: Study protocol for a randomized, double-blind, placebo-controlled trial. Trials 14 (1): 1–8.CrossRefGoogle Scholar
  5. Amalaradjou, M.A.R., and A.K. Bhunia. 2013. Bioengineered probiotics, a strategic approach to control enteric infections. Bioengineered 4 (6): 379–387.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amalaradjou, M.A.R., A. Narayanan, S.A. Baskaran, et al. 2010. Antibiofilm effect of trans-cinnamaldehyde on uropathogenic Escherichia coli. The Journal of Urology 184 (1): 358–363.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bäckhed, Fredrik, R.E. Ley, and Justin L. Sonnenburg. 2005. Host-bacterial mutualism in the human intestine. Science 307 (25): 1915–1922.CrossRefGoogle Scholar
  8. Baek, E., H. Kim, H. Choi, et al. 2012. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes. Journal of Microbiology 50 (5): 842–848.CrossRefGoogle Scholar
  9. Bauman, R.W., E. Machunis-Masuoka, and C.D. Cosby. 2012. Microbiology: With diseases by body system. San Francisco: Benjamin Cummings.Google Scholar
  10. Bosch, A., R.M. Pintó, and S. Guix. 2016. Foodborne viruses. Current opinion in food science. Vol. 8, 110–119.Google Scholar
  11. Bourdichon, F., S. Casaregola, C. Farrokh, et al. 2012. Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology 154 (3): 87–97.PubMedCrossRefGoogle Scholar
  12. Brüssow, H., and E. Kutter. 2005. Phage ecology. Bacteriophages: Biology and Applications 70: 129–163.Google Scholar
  13. Buzby, J.C., T. Roberts, C.T.J. Lin, et al. 1996. Bacterial foodborne disease. Medical costs and productivity losses. Agricultural Economics Reports: 741.Google Scholar
  14. Cheikhyoussef, A., N. Pogori, and H. Zhang. 2007. Study of the inhibition effects of Bifidobacterium supernatants towards growth of Bacillus cereus and Escherichia coli. International Journal of Dairy Science 2: 116–125.CrossRefGoogle Scholar
  15. Cheikhyoussef, A., N. Pogori, F. Tian, et al. 2008. Interaction of Bifidobacterium and yoghurt mixed culture with Salmonella during associated cultures growth. Biotechnology 7 (3): 563–568.CrossRefGoogle Scholar
  16. Cheikhyoussef, A., N. Pogori, H. Chen, et al. 2009. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (Blis) produced by Bifidobacterium infantis Bcrc 14602. Food Control 20 (6): 553–559.CrossRefGoogle Scholar
  17. Cheikhyoussef, A., N. Cheikhyoussef, H. Chen, et al. 2010. Bifidin I – A new Bacteriocin produced by Bifidobacterium infantis Bcrc 14602: Purification and partial amino acid sequence. Food Control 21 (5): 746–753.CrossRefGoogle Scholar
  18. Chen, X., F. Tian, X. Liu, et al. 2010. In vitro screening of lactobacilli with antagonistic activity against helicobacter pylori from traditionally fermented foods. Journal of Dairy Science 93 (12): 5627–5634.PubMedCrossRefGoogle Scholar
  19. Chen, X., X.M. Liu, F. Tian, et al. 2012. Antagonistic activities of lactobacilli against helicobacter pylori growth and infection in human gastric epithelial cells. Journal of Food Science 77 (1): M9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christensen, H.R., H. Frokiaer, and J.J. Pestka. 2002. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. The Journal of Immunology 168 (1): 171–178.PubMedCrossRefGoogle Scholar
  21. Coda, R., L. Nionelli, C.G. Rizzello, et al. 2010. Spelt and emmer flours: Characterization of the lactic acid bacteria microbiota and selection of mixed starters for bread making. Journal of Applied Microbiology 108 (3): 925–935.PubMedCrossRefGoogle Scholar
  22. Corsetti, A., M. Gobbetti, B. De Marco, and F. Balestrieri. 2000. Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. Journal of Agricultural and Food Chemistry 48: 3044–3051.PubMedCrossRefGoogle Scholar
  23. Dang, T.D., A. Vermeulen, P. Ragaert, et al. 2009. A peculiar stimulatory effect of acetic and lactic acid on growth and fermentative metabolism of Zygosaccharomyces bailii. Food Microbiology 26 (3): 320–327.PubMedCrossRefGoogle Scholar
  24. Dasti, J.I., A.M. Tareen, R. Lugert, et al. 2010. Campylobacter jejuni: A brief overview on pathogenicity-associated factors and disease-mediating mechanisms. International Journal of Medical Microbiology 300 (4): 205–211.PubMedCrossRefGoogle Scholar
  25. De Blackburn, C.W., and P.J. McClure. 2002. Foodborne pathogens: Hazards, risk analysis and control. Viruses, 439–452.CrossRefGoogle Scholar
  26. De Carvalho, E.B., M.R. Vitolo, C.M. Gama, et al. 2006. Fiber intake, constipation, and overweight among adolescents living in Sao Paulo city. Nutrition 22 (7–8): 744–749.PubMedCrossRefGoogle Scholar
  27. Dhama, K., S. Rajagunalan, S. Chakraborty, et al. 2013. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: A review. Pakistan Journal of Biological Sciences 16 (20): 1076.PubMedCrossRefGoogle Scholar
  28. Doyle, M.P., and M.C. Erickson. 2012. Opportunities for mitigating pathogen contamination during on-farm food production. International Journal of Food Microbiology 152 (3): 54–74.PubMedCrossRefGoogle Scholar
  29. Foreman-van Drongelen, Magritha M.H.P. 1995. Long-chain polyunsaturated fatty acids in preterm infants: Status at birth and its influence on postnatal levels. The Journal of Pediatrics 126 (4): 611–619.PubMedCrossRefGoogle Scholar
  30. Dwivedi, H.P., and L.-A. Jaykus. 2011. Detection of pathogens in foods: The current state-of-the-art and future directions. Critical Reviews in Microbiology 37 (1): 40–63.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dwivedy, A.K., M. Kumar, N. Upadhyay, et al. 2016. Plant essential oils against food borne fungi and mycotoxins. Current opinion in food science. Vol. 11, 16–21.Google Scholar
  32. Elizaquivel, P., and R. Aznar. 2008. A multiplex Rti-Pcr reaction for simultaneous detection of Escherichia coli O157: H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables. Food Microbiology 25 (5): 705–713.PubMedCrossRefGoogle Scholar
  33. Fang, He, T. Elina, Arvilommi Heikki, and Salminen Seppo. 2000. Modulation of humoral immune response through probiotic intake. FEMS Immunology and Medical Microbiology 29 (2): 47–52.PubMedCrossRefGoogle Scholar
  34. FAO/WHO. 2001. Evaluation of health and nutritional properties of powder milk and live lactic acid bacteria . Food and agriculture Organization of the United Nations and World Health Organization Expert Consultation Report, 1–34.Google Scholar
  35. Fujiwara, Shigeru, H. Hashiba, and Tetsuji Hirota. 1997. Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Applied and Environmental Microbiology 63 (2): 506–512.PubMedPubMedCentralGoogle Scholar
  36. Gandhi, M., and M.L. Chikindas. 2007. Listeria: A foodborne pathogen that knows how to survive. International Journal of Food Microbiology 113 (1): 1–15.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Garcia, P., B. Martinez, J. Obeso, et al. 2008. Bacteriophages and their application in food safety. Letters in Applied Microbiology 47 (6): 479–485.PubMedCrossRefPubMedCentralGoogle Scholar
  38. García, P., L. Rodríguez, A. Rodríguez, et al. 2010. Food biopreservation: Promising strategies using bacteriocins, bacteriophages and endolysins. Trends in Food Science & Technology 21 (8): 373–382.CrossRefGoogle Scholar
  39. Ghunaim, H., and T.S. Desin. 2015. Potential impact of food safety vaccines on health care costs. Foodborne Pathogens and Disease 12 (9): 733–740.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Giacco, R., G. Clemente, D. Luongo, et al. 2004. Effects of short-chain fructo-oligosaccharides on glucose and lipid metabolism in mild hypercholesterolaemic individuals. Clinical Nutrition 23 (3): 331–340.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gibson, G.R., and M.B. Roberfroid. 2004. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition 17 (2): 259–275.Google Scholar
  42. Gill, Harsharnjit S., K.J. Rutherfurd, Martin L. Cross, and Pramod K. Gopal. 2001. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. The American Journal of Clinical Nutrition 74 (3): 833–839.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gobbetti, M. 2010. Use of sourdough fermented wheat germ for enhancing the nutritional, texture and sensory characteristics of the white bread. European Food Research and Technology 230: 645–654.CrossRefGoogle Scholar
  44. Goossens, D., D. Jonkers, M. Russel, et al. 2005. Survival of the probiotic, L. plantarum 299v and its effects on the faecal bacterial flora, with and without gastric acid inhibition. Digestive and Liver Disease 37 (1): 44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Guo, J., B. Brosnan, A. Furey, et al. 2012. Antifungal activity of lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioeng Bugs 3 (2): 104–113.PubMedPubMedCentralGoogle Scholar
  46. Hassan, M., M. Kjos, I. Nes, et al. 2012. Natural antimicrobial peptides from bacteria: Characteristics and potential applications to fight against antibiotic resistance. Journal of Applied Microbiology 113 (4): 723–736.PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hoover, D.G., and L.R. Steenson. 1993. Bacteriocins of lactic acid bacteria. Biochimie 70 (3): 337–349.Google Scholar
  48. Horie, M., A. Ishiyama, and Y. Fujihira-Ueki. 2002. Inhibition of the adherence of Escherichia coli strains to basement membrane by Lactobacillus crispatus expressing an S-layer. Journal of Applied Microbiology 92 (1): 396–403.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hui, Y.H., S.A. Sattar, and W.-K. Nip. 2000. Foodborne disease handbook. In Viruses: Parasites: Pathogens, and Haccp, vol. 2. Boca Raton: CRC Press.Google Scholar
  50. Hyldgaard, M., T. Mygind, and R.L. Meyer. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3 (12): 12.PubMedPubMedCentralGoogle Scholar
  51. Ibrahim, S.A., and A. Bezkorovainy. 1993. Inhibition of Escherichia coli by bifidobacteria. Journal of Food Protection 56 (8): 713–715.CrossRefGoogle Scholar
  52. Johny, A.K., T. Hoagland, and K. Venkitanarayanan. 2010. Effect of subinhibitory concentrations of plant-derived molecules in increasing the sensitivity of multidrug-resistant Salmonella enterica serovar Typhimurium Dt104 to antibiotics. Foodborne Pathogens and Disease 7 (10): 1165–1170.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Josephs-Spaulding, J., E. Beeler, and O.V. Singh. 2016. Human microbiome versus food-borne pathogens: Friend or foe. Applied Microbiology and Biotechnology 100 (11): 4845–4863.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Karahan, N., M. Isler, A. Koyu, et al. 2012. Effects of probiotics on methionine choline-deficient diet-induced steatohepatitis in rats. The Turkish Journal of Gastroenterology 23 (2): 110–121.PubMedCrossRefPubMedCentralGoogle Scholar
  55. Karygianni, L., M. Cecere, A.L. Skaltsounis, et al. 2014. High-level antimicrobial efficacy of representative Mediterranean natural plant extracts against oral microorganisms. BioMed Research International 2014: 1.CrossRefGoogle Scholar
  56. Klaenhammer, T.R., M. Kleerebezem, M.V. Kopp, et al. 2012. The impact of probiotics and prebiotics on the immune system. Nature Reviews Immunology 12 (10): 728–734.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Koopmans, M., and E. Duizer. 2004. Foodborne viruses: An emerging problem. International Journal of Food Microbiology 90 (1): 23–41.PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kotzekidou, P., P. Giannakidis, and A. Boulamatsis. 2008. Antimicrobial activity of some plant extracts and essential oils against foodborne pathogens in vitro and on the fate of inoculated pathogens in chocolate. LWT –Food Science and Technology 41 (1): 119–127.CrossRefGoogle Scholar
  59. Lavermicocca, Paola, F. Valerio, and Antonio Evidente. 2010. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology 66 (9): 4084–4090.CrossRefGoogle Scholar
  60. Laxminarayan, R., A. Duse, C. Wattal, et al. 2013. Antibiotic resistance—The need for global solutions. The Lancet Infectious Diseases 13 (12): 1057–1098.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Lehto, Elina M., and S.J. Salminen. 1997. Inhibition of Salmonella typhimurium adhesion to Caco-2 cell cultures by lactobacillus strain GG spent culture supernate: Only a pH effect? FEMS Immunology and Medical Microbiology 18 (2): 125–132.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lewus, C.B., A. Kaiser, and T.J. Montville. 1991. Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meat. Applied and Environmental Microbiology 57 (6): 1683–1688.PubMedPubMedCentralGoogle Scholar
  63. Li, J., J. Wang, T. Kaneko, et al. 2004. Effects of fiber intake on the blood pressure, lipids, and heart rate in Goto Kakizaki rats. Nutrition 20 (11–12): 1003–1007.PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lind, H., H. Jonsson, and J. Schnurer. 2005. Antifungal effect of dairy propionibacteria--contribution of organic acids. International Journal of Food Microbiology 98 (2): 157–165.PubMedCrossRefGoogle Scholar
  65. Liu, X., W. Liu, Q. Zhang, et al. 2013. Screening of lactobacilli with antagonistic activity against Enteroinvasive Escherichia coli. Food Control 30 (2): 563–568.CrossRefGoogle Scholar
  66. Lomasney, K.W., and N.P. Hyland. 2013. The application of using chambers for determining the impact of microbes and probiotics on intestinal ion transport. Canadian Journal of Physiology and Pharmacology 91 (9): 663–670.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Luksienė, Z., and A. Zukauskas. 2009. Prospects of photosensitization in control of pathogenic and harmful micro-organisms. Journal of Applied Microbiology 107 (5): 1415–1424.PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mack, David R., S. Michali, and Shu Wei. 1999. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Probiotics and Intestinal Mucins 44 (2): 941–950.Google Scholar
  69. Mandal, S.M., O.N. Silva, and O.L. Franco. 2014. Recombinant probiotics with antimicrobial peptides: A dual strategy to improve immune response in immunocompromised patients. Drug Discovery Today 19 (8): 1045–1050.PubMedCrossRefPubMedCentralGoogle Scholar
  70. Mani-López, E., H.S. García, and A. López-Malo. 2012. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International 45 (2): 713–721.CrossRefGoogle Scholar
  71. Marshall, J.A., and L.D. Bruggink. 2011. The dynamics of norovirus outbreak epidemics: Recent insights. International Journal of Environmental Research and Public Health 8 (4): 1141–1149.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Medici, M., C.G. Vinderola, R. Weill, et al. 2005. Effect of fermented milk containing probiotic bacteria in the prevention of an enteroinvasive Escherichia coli infection in mice. Journal of Dairy Research 72 (02): 243–249.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Meng, J., M.P. Doyle, T. Zhao, et al. 1994. Detection and control of Escherichia coli O157:H7 in foods. Trends in Food Science & Technology 5 (6): 179–185.CrossRefGoogle Scholar
  74. Mikulski, D., J. Jankowski, J. Naczmanski, et al. 2012. Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poultry Science 91 (10): 2691–2700.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Molnar, A.K., B. Podmaniczky, P. Kurti, et al. 2011. Effect of different concentrations of bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. British Poultry Science 52 (6): 658–665.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Morita, H., F. He, T. Fuse, et al. 2002. Cytokine production by the murine macrophage cell line J774.1 after exposure to lactobacilli. Bioscience, Biotechnology, and Biochemistry 66 (9): 1963–1966.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Moro, G., and G. Boehm. 2008. Structural and functional aspects of prebiotics used in infant nutrition. The Journal of Nutrition 138 (5): 1818–1828.Google Scholar
  78. Mountzouris, K.C., C. Balaskas, I. Xanthakos, et al. 2009. Effects of a multi-species probiotic on biomarkers of competitive exclusion efficacy in broilers challenged with Salmonella enteritidis. British Poultry Science 50 (4): 467–478.PubMedCrossRefPubMedCentralGoogle Scholar
  79. Myung, D.S., and Y.E. Joo. 2012. Gut microbial influence and probiotics on colorectal cancer. The Korean Journal of Gastroenterology 60 (5): 275.PubMedCrossRefPubMedCentralGoogle Scholar
  80. Nagata, S., T. Asahara, T. Ohta, et al. 2011. Effect of the continuous intake of probiotic-fermented milk containing Lactobacillus casei strain Shirota on fever in a mass outbreak of norovirus gastroenteritis and the faecal microflora in a health service facility for the aged. British Journal of Nutrition 106 (4): 549–556.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Newell, D.G., M. Koopmans, L. Verhoef, et al. 2010a. Food-borne diseases—The challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology 139: S3–S15.PubMedCrossRefPubMedCentralGoogle Scholar
  82. Newell, Diane G., et al. 2010b. Food-borne diseases — The challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology (supplement) 139 (1): S3–S15.CrossRefGoogle Scholar
  83. Otte, J.M., and D.K. Podolsky. 2004. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. American Journal of Physiology. Gastrointestinal and Liver Physiology 286 (5): 613–626.CrossRefGoogle Scholar
  84. Ouwehand, A.C., S. Salminen, and E. Isolauri. 2002. Probiotics: An overview of beneficial effects. Antonie Van Leeuwenhoek 82 (1–4): 279–289.PubMedCrossRefPubMedCentralGoogle Scholar
  85. Palsboll, P.J., J. Allen, M. Berube, et al. 1997. Genetic tagging of humpback whales. Nature 388 (6644): 767–769.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Paton, Adrienne W., R. Morona, and J.C. Paton. 2010. Bioengineered bugs expressing oligosaccharide receptor mimics. Bioengineered Bugs 1 (3): 172–177.PubMedCrossRefGoogle Scholar
  87. Rijkers, G.T., S. Bengmark, P. Enck, et al. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: Current status and recommendations for future research. The Journal of Nutrition 140 (3): 671S–676S.PubMedCrossRefGoogle Scholar
  88. Rizzello, C.G., A. Cassone, R. Coda, et al. 2011. Antifungal activity of sourdough fermented wheat germ used as an ingredient for bread making. Food Chemistry 127 (3): 952–959.PubMedCrossRefGoogle Scholar
  89. Roberfroid, M. 2007a. Prebiotics: The concept revisited. The Journal of Nutrition 137 (4): 830–837.CrossRefGoogle Scholar
  90. Roberfroid, M.B. 2007b. Functional foods: Concepts and application to inulin and oligofructose. British Journal of Nutrition 87 (S2): S139.CrossRefGoogle Scholar
  91. Robertson, L.J., J.W. van der Giessen, M.B. Batz, et al. 2013. Have foodborne parasites finally become a global concern? Trends in Parasitology 29 (3): 101–103.PubMedCrossRefGoogle Scholar
  92. Robertson, L.J., H. Sprong, Y.R. Ortega, et al. 2014. Impacts of globalisation on foodborne parasites. Trends in Parasitology 30 (1): 37–52.PubMedCrossRefGoogle Scholar
  93. Rodenburg, W., J. Keijer, E. Kramer, et al. 2008. Impaired barrier function by dietary fructo-oligosaccharides (fos) in rats is accompanied by increased colonic mitochondrial gene expression. BMC Genomics 9: 144.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rycroft, C.E., M.R. Jones, G.R. Gibson, and R.A. Rastall. 2001. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology 91 (2): 878–887.PubMedCrossRefGoogle Scholar
  95. Sant’Ana, A.S., M.S. Barbosa, M.T. Destro, et al. 2012. Growth potential of Salmonella spp. and Listeria Monocytogenes in nine types of readyto-eat vegetables stored at variable temperature conditions during shelf-life. International Journal of Food Microbiology 157 (1): 52–58.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Scallan, E., R.M. Hoekstra, F.J. Angulo, et al. 2011. Foodborne illness acquired in the United States-major pathogens. Emerging Infectious Diseases 17 (1): 7.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sertac Arslanoglu, G.E.M., and Gunther Boehm. 2007. Early supplementation of prebiotic oligosaccharides protects formula-fed infants against infections during the first 6 months of life. The Journal of Nutrition 11 (3): 2420–2424.CrossRefGoogle Scholar
  98. Silva, O.N., K.C. Mulder, A.E. Barbosa, et al. 2011. Exploring the pharmacological potential of promiscuous host-defense peptides: From natural screenings to biotechnological applications. Frontiers in Microbiology 2 (1): 232.PubMedPubMedCentralGoogle Scholar
  99. Sirsat, S., A. Muthaiyan, and S. Ricke. 2009. Antimicrobials for foodborne pathogen reduction in organic and natural poultry production. The Journal of Applied Poultry Research 18 (2): 379–388.CrossRefGoogle Scholar
  100. Smith, A.J., B. Oxley, S. Malpas, et al. 2004. Compounds exhibiting selective efficacy for different Β subunits of human recombinant ℘-aminobutyric acida receptors. Journal of Pharmacology and Experimental Therapeutics 311 (2): 601–609.PubMedCrossRefPubMedCentralGoogle Scholar
  101. Soon, J., S. Chadd, and R. Baines. 2011. Escherichia coli O157: H7 in beef cattle: On farm contamination and pre-slaughter control methods. Animal Health Research Reviews 12 (02): 197–211.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Stepanović, S., I. Ćirković, and L. Ranin. 2004. Biofilm formation by Salmonella spp. and Listeria Monocytogenes on plastic surface. Letters in Applied Microbiology 38 (5): 428–432.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Stewart, M.L., D.A. Timm, and J.L. Slavin. 2008. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Nutrition Research 28 (5): 329–334.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Strom, K., J. Sjogren, A. Broberg, et al. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-pro) and cyclo(L-Phe-trans-4-OH-L-pro) and 3-phenyllactic acid. Applied and Environmental Microbiology 68 (9): 4322–4327.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Talwalkar, A., and K. Kailasapathy. 2004. Comparison of selective and differential media for the accurate enumeration of strains of lactobacillus acidophilus, Bifidobacterium spp. and lactobacillus casei complex from commercial yoghurts. International Dairy Journal 14 (2): 143–149.CrossRefGoogle Scholar
  106. Tárrega, A., A. Rocafull, and E. Costell. 2010. Effect of blends of short and long-chain inulin on the rheological and sensory properties of prebiotic low-fat custards. LWT – Food Science and Technology 43 (3): 556–562.CrossRefGoogle Scholar
  107. Taylor, L.H., S.M. Latham, and E. Mark. 2001. Risk factors for human disease emergence. Philosophical transactions of the Royal Society of London B. Biological Sciences 356 (1411): 983–989.PubMedCrossRefPubMedCentralGoogle Scholar
  108. Thomas, M.K., R. Murray, L. Flockhart, et al. 2013. Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathogens and Disease 10 (7): 639–648.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Thomas, M. Kate, et al. 2015. Estimates of foodborne illness–related hospitalizations and deaths in Canada for 30 specified pathogens and unspecified agents. Foodborne Pathogens and Disease 12 (10): 820–827.PubMedPubMedCentralCrossRefGoogle Scholar
  110. van Walbeek, W., P.M. Scott, and F.S. Thatcher. 1968. Mycotoxins from food-borne fungi. Canadian Journal of Microbiology 14 (2): 131–137.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Wang, Z., Q. Yu, J. Gao, et al. 2012. Mucosal and systemic immune responses induced by recombinant lactobacillus spp. expressing the hemagglutinin of the avian influenza virus H5N1. Clinical and Vaccine Immunology 19 (2): 174–179.PubMedCrossRefPubMedCentralGoogle Scholar
  112. Wang, G., J. Ning, J. Zhao, et al. 2014a. Partial characterisation of an anti-listeria substance produced by Pediococcus acidilactici P9. International Dairy Journal 34 (2): 275–279.CrossRefGoogle Scholar
  113. Wang, G., Y. Zhao, F. Tian, et al. 2014b. Screening of adhesive lactobacilli with antagonistic activity against campylobacter jejuni. Food Control 44: 49–57.CrossRefGoogle Scholar
  114. Wen, K., M.S. Azevedo, A. Gonzalez, et al. 2009. Toll-like receptor and innate cytokine responses induced by lactobacilli colonization and human rotavirus infection in gnotobiotic pigs. Veterinary Immunology and Immunopathology 127 (3–4): 304–315.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wittebole, X., S. De Roock, and S.M. Opal. 2014. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5 (1): 226–235.PubMedCrossRefPubMedCentralGoogle Scholar
  116. Yamamoto, Kenji, T. Miwa, and Hiromu Taniguchi. 1996. Binding specificity of lactobacillus to glycolipids. Biochemical and Biophysical Research Communications 228 (1): 148–152.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Yildirim, Z., D. Winters, and M. Johnson. 1999. Purification, amino acid sequence and mode of action of Bifidocin B produced by Bifidobacterium bifidum Ncfb 1454. Journal of Applied Microbiology 86 (1): 45–54.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zeyner, A., and E. Boldt. 2006. Effects of a probiotic enterococcus faecium strain supplemented from birth to weaning on diarrhoea patterns and performance of piglets. Journal of Animal Physiology and Animal Nutrition(Berlin) 90 (1–2): 25–31.CrossRefGoogle Scholar
  119. Zhao, C., B. Ge, J. De Villena, et al. 2001. Prevalence of campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, Turkey, pork, and beef from the greater Washington, DC, area. Applied and Environmental Microbiology 67 (12): 5431–5436.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Quadram Institute BioscienceNorwichUK
  2. 2.School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations