Advertisement

Lactic Acid Bacteria-Based Food Fermentations

  • Xiaoming LiuEmail author
  • Arjan Narbad
Chapter

Abstract

Food fermentation is essential for human being throughout the history as fermented foods enrich our diets. In particular, lactic acid bacteria play important roles in food fermentation, and they present us with foods in diverse aromas, tastes and textures. These edible microorganisms are found in pickled vegetables, sausages, cheeses, yogurts, sourdough breads, et al. The practice of lactic acid bacteria-based food fermentations happened accidentally at the beginning, but soon spread out for multiple benefits including preservation, safety, nutrition and flavor.

Keywords

Fermented products Biochemistry Microbiology Probiotic properties 

References

  1. Ai, C., Q. Zhang, C. Ren, G. Wang, X. Liu, F. Tian, J. Zhao, H. Zhang, Y.Q. Chen, and W. Chen. 2014. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PLoS One 9 (10): e109461.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ai, C., Q. Zhang, J. Ding, C. Ren, G. Wang, X. Liu, F. Tian, J. Zhao, H. Zhang, and Y.Q. Chen. 2015. Suppression of dust mite allergy by mucosal delivery of a hypoallergenic derivative in a mouse model. Applied Microbiology and Biotechnology 99 (10): 4309.PubMedCrossRefGoogle Scholar
  3. Al-Dhaheri, A.S., R. AI-Hemeiri, J. Kizhakkayil, A. AI-Nabulsi, A. Abushelaibi, N.P. Shah, and M. Ayyash. 2017. Health-promoting benefits of low-fat akawi cheese made by exopolysaccharide-producing probiotic Lactobacillus plantarum isolated from camel milk. Journal of Dairy Science 100 (10): 7771–7779.PubMedCrossRefGoogle Scholar
  4. Aidoo, K.E., M.J.R. Nout, and P.K. Sarkar. 2006. Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Research 6: 30–39.PubMedCrossRefGoogle Scholar
  5. Alessandria, V., I. Ferrocino, F.D. Filippis, et al. 2016. Microbiota of an Italian Grana-Like Cheese during manufacture and ripening, unraveled by 16S rRNA-Based approaches. Journal Applied & Environmental Microbiology 82 (13): 3988.CrossRefGoogle Scholar
  6. Alexander, B., and W. Patrick. 2001. The complete genome sequence of the acid bacterium lactococcus lactis ssp. lactis IL1403. Genome Research 11: 731–753.CrossRefGoogle Scholar
  7. Amatayakul, T., F. Sherkat, and N.P. Shah. 2006a. Physical characteristics of set yoghurt made with altered casein to whey protein ratios and EPS-producing starter cultures at 9 and 14% total solids. Food Hydrocolloids 20 (2–3): 314–324.CrossRefGoogle Scholar
  8. ———. 2006b. Syneresis in set yogurt as affected by EPS starter cultures and levels of solids. International Journal of Dairy Technology 59 (3): 216–221.CrossRefGoogle Scholar
  9. Badel, S., T. Bernardi, and P. Michaud. 2011. New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances 29 (1): 54–66.PubMedCrossRefGoogle Scholar
  10. Beal, C., J. Skokanova, E. Latrille, et al. 1999. combined effects of culture conditions and storage time on acidification and viscosity of stirred yogurt. Journal of Dairy Science 82: 673–681.CrossRefGoogle Scholar
  11. Behare, P.V., R. Singh, M. Kumar, J.B. Prajapati, and R.P. Singh. 2009. Exopolysaccharides of lactic acid bacteria: A review. Journal of Food Science and Technology-Mysore 46 (1): 1–11.Google Scholar
  12. Bessmeltseva, M., E. Viiard, J. Simm, et al. 2014. Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation[J]. Plos One 9 (4): e95449.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Beuchat, L.R. 1983. Indigenous fermented foods. In Biotechnology, Food and feed production with microorganisms, ed. G. Reed. Weinheim: Verlag Chemie.Google Scholar
  14. Bhaskaracharya, R.K., and N.P. Shah. 2000. Texture characteristics and microstructure of skim milk mozzarella cheeses made using exopolysaccharide or non-exopolysaccharide producing starter cultures. Australian Journal of Dairy Technology 55 (3): 132–138.Google Scholar
  15. Björkroth, K.J., U. Schillinger, R. Geisen, N. Weiss, B. Hoste, W.H. Holzapfel, H.J. Korkeala, and P. Vandamme. 2002. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. International Journal of Systematic & Evolutionary Microbiology 52 (Pt 1): 141.CrossRefGoogle Scholar
  16. Black, B.A., E. Zannini, J.M. Curtis, and M.G. Ganzle. 2013. Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread. Applied and Environmental Microbiology 79: 1866–1873.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blandino, A., M.E. Alaseeri, S.S. Pandiella, D. Cantero, and C. Webb. 2003. Cereal-based fermented foods and beverages. Food Research International 36 (6): 527–543.CrossRefGoogle Scholar
  18. Bleukx, W., K. Brijs, S. Torrekens, F. Van Leuven, and J.A. Delcour. 1998. Specificity of a wheat gluten aspartic proteinase. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 1387: 317–324.CrossRefGoogle Scholar
  19. Bokulich, N.A., Bamforth, C.W., and Mills, D.A. 2012. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American Coolship Ale. PloS one 7 (4): e35507.PubMedPubMedCentralCrossRefGoogle Scholar
  20. ———, N.A., Thorngate, J.H., Richardson, P.M., et al. 2014a. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proceedings of the National Academy of Sciences of the United States of America 111 (1): 139–148.Google Scholar
  21. ———, N.A., Ohta, M., Lee, M., et al. 2014b. Indigenous bacteria and fungi drive traditional kimoto sake fermentations. Journal of Applied & Environmental Microbiology 80 (17): 5522–9.Google Scholar
  22. ———, N.A., Bergsveinson, J., Ziola, B., et al. 2015. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. Elife Sciences 4 (4): 4364–4366.Google Scholar
  23. Bouchereau, A., A. Aziz, F. Larher, and J. Martin-Tanguy. 1999. Polyamines and environmental challenges: recent development. Plant Science 140 (2): 103–125.CrossRefGoogle Scholar
  24. Bounaix, M.-S., V. Gabriel, S. Morel, H. Robert, P. Rabier, M. Remaud-Siméon, B. Gabriel, and C. Fontagné-Faucher. 2009. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. Journal of Agricultural and Food Chemistry 57: 10889–10897.PubMedCrossRefGoogle Scholar
  25. Brijs, K., W. Bleukx, and J.A. Delcour. 1999. Proteolytic activities in Dormant Rye (Secale cereale L.) grain. Journal of Agricultural and Food Chemistry 47: 3572–3578.PubMedCrossRefGoogle Scholar
  26. Broadbent, J.R., D.J. McMahon, D.L. Welker, C.J. Oberg, and S. Moineau. 2003. Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: A review. Journal of Dairy Science 86 (2): 407–423.PubMedCrossRefGoogle Scholar
  27. Calasso, M., D. Ercolini, L. Mancini, G. Stellato, F. Minervini, R.D. Cagno, et al. 2016. Relationships among house, rind and core microbiotas during manufacture of traditional italian cheeses at the same dairy plant. Food Microbiology 54: 115–126.CrossRefGoogle Scholar
  28. Callon, C., C. Delbès, F. Duthoit, et al. 2006. Application of SSCP–PCR fingerprinting to profile the yeast community in raw milk Salers cheeses. Systematic & Applied Microbiology 29 (2): 172.CrossRefGoogle Scholar
  29. Cao, J.L., J.X. Yang, Q.C. Hou, X. Haiyan, Y. Zheng, H.P. Zhang, and Liebing Zhang. 2017. Assessment of bacterial profiles in aged, home-made Sichuan paocai brine with varying titratable acidity by PacBio SMRT sequencing technology. Food Control 78: 14–23.CrossRefGoogle Scholar
  30. Chan, T.Y. 2010. Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicology Letters 200 (1–2): 107–108.PubMedGoogle Scholar
  31. Chang, J.Y., and H.C. Chang. 2010. Improvements in the quality and shelf life of kimchi by fermentation with the induced bacteriocin-producing strain, Leuconostoc citreum GJ7 as a starter. Journal of Food Science 75 (2): M103.PubMedCrossRefGoogle Scholar
  32. Chang, A.C., T.Y. Yang, and G.L. Riskowski. 2013. Changes in nitrate and nitrite concentrations over 24 h for sweet basil and scallions. Food Chemistry 136 (2): 955.PubMedCrossRefGoogle Scholar
  33. Chavan, U.d., J.k. Chavan, and S.s. Kadam. 1988. Effect of fermentation on soluble proteins and in vitro protein digestibility of Sorghum, Green Gram and Sorghum-Green Gram Blends. Journal of Food Science 53: 1574–1575.CrossRefGoogle Scholar
  34. Chen, G. 2010. The history and development of Chinese pickles. Food and Fermentation Technology 46 (3): 1–5.Google Scholar
  35. Cho, Y.R., J.Y. Chang, and H.C. Chang. 2007. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. Journal of Microbiology & Biotechnology 17 (1): 104–109.Google Scholar
  36. Christensen, J.E., E.G. Dudley, J.A. Pederson, and J.L. Steele. 1999. Peptidases and amino acid catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76: 217–246.PubMedCrossRefGoogle Scholar
  37. Clare, D.A., G.L. Catignani, and H.E. Swaisgood. 2003. Biodefence properties of milk: The role of antimicrobial proteins and peptides. Current Pharmaceutical Design 9: 1239–1255.PubMedCrossRefGoogle Scholar
  38. Cocolin, L., and D. Ercolini. 2008. Molecular techniques in the microbial ecology of fermented foods. New York: Springer.CrossRefGoogle Scholar
  39. Cocolin, L., P. Dolci, and K. Rantsiou. 2011. Biodiversity and dynamics of meat fermentations: The contribution of molecular methods for a better comprehension of a complex ecosystem. Meat Science 89 (3): 296–302.PubMedCrossRefGoogle Scholar
  40. Cocolin, Luca, and Danilo Ercolini. 2015. Zooming into food-associated microbial consortia: A ‘cultural’ evolution. Current Opinion in Food Science 2: 43–50.CrossRefGoogle Scholar
  41. Cogan, T.M., and K.N. Jordan. 1994. Metabolism of Leuconostoc, Bacteria. Journal of Dairy Science 77 (77): 2704–2717.CrossRefGoogle Scholar
  42. Cogan, T.M., M. Barbosa, E. Beuvier, B. Bianchisalvadori, P.S. Cocconcelli, I. Fernandes, et al. 1997. Characterization of the lactic acid bacteria in artisanal dairy products. Journal of Dairy Research 64 (3): 409–421.CrossRefGoogle Scholar
  43. Czerny, M., and P. Schieberle. 2002. Important aroma compounds in freshly ground whole meal and white wheat flour identification and quantitative changes during Sourdough fermentation. Journal of Agricultural and Food Chemistry 50: 6835–6840.PubMedCrossRefGoogle Scholar
  44. Danielam, S., T. Adnany, P. Analúciaops, et al. 2010. The viability of three probiotic organisms grown with yoghurt starter cultures during storage for 21 days at 4°C. International Journal of Dairy Technology 62: 397–404.Google Scholar
  45. De Filippis, F., A. Genovese, P. Ferranti, et al. 2016. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Scientific Reports 6: 21871.PubMedPubMedCentralCrossRefGoogle Scholar
  46. De Pasquale, I., M. Calasso, L. Mancini, et al. 2014a. Causal relationship between microbial ecology dynamics and proteolysis during manufacture and ripening of protected designation of origin (PDO) cheese Canestrato Pugliese. Applied and environmental microbiology 80 (14): 4085–4094.PubMedPubMedCentralCrossRefGoogle Scholar
  47. De Pasquale, I., R. Di Cagno, S. Buchin, et al. 2014b. Microbial ecology dynamics reveal a succession in the core microbiota involved in the ripening of pasta filata caciocavallo pugliese cheese. Applied and Environmental Microbiology 80 (19): 6243–6255.PubMedPubMedCentralCrossRefGoogle Scholar
  48. De Vuyst, L., and P. Neysens. 2005. The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science and Technology 16: 43–56.CrossRefGoogle Scholar
  49. De Vuyst, L., F. De Vin, F. Vaningelgem, and B. Degeest. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal 11 (9SI): 687–707.CrossRefGoogle Scholar
  50. Delong, E.F., C.M. Preston, T. Mincer, V. Rich, S.J. Hallam, N.U. Frigaard, A. Martinez, M.B. Sullivan, R. Edwards, and B.R. Brito. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311 (5760): 496.PubMedCrossRefGoogle Scholar
  51. Deutsch. Microbiology and biochemistry of cheese and fermented milk – Springer. Springer US.Google Scholar
  52. Dolci, P., F. De Filippis, A. La Storia, D. Ercolini, and L. Cocolin. 2014. rRNA-based monitoring of the micro- biota involved in Fontina PDO cheese production in relation to different stages of cow lactation. International Journal of Food Microbiology 185: 127–135.PubMedCrossRefGoogle Scholar
  53. Đorđević, T.M., S.S. Šiler-Marinković, and S.I. Dimitrijević-Branković. 2010. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food and Chemical 119: 957–963.CrossRefGoogle Scholar
  54. Dugatbony, E., C. Straub, A. Teissandier, et al. 2014. Overview of a surface-ripened cheese community functioning by meta-omics analyses. Plos One 10 (4): e0124360.CrossRefGoogle Scholar
  55. Dykes, L., and L.W. Rooney. 2006. Sorghum and millet phenols and antioxidants. Journal of Cereal Science 44: 236–251.CrossRefGoogle Scholar
  56. Ehrmann, M.A., and R.F. Vogel. 1998. Maltose metabolism of Lactobacillus sanfranciscensis: cloning and heterologous expression of the key enzymes, maltose phosphorylase and phosphoglucomutase. FEMS Microbiology Letters 169: 81–86.PubMedCrossRefGoogle Scholar
  57. Ercolini, D., F.D. Filippis, A.L. Storia, et al. 2012. “Remake” by high-throughput sequencing of the microbiota involved in the production of water Buffalo Mozzarella cheese. Applied & Environmental Microbiology 78 (22): 8142–8145.CrossRefGoogle Scholar
  58. Fan, L. 1991. Study on the lactic acid fermentation of tomato juice. Food & Fermentation Industries 2: 22–29.Google Scholar
  59. Fanning, S., L.J. Hall, M. Cronin, A. Zomer, J. MacSharry, D. Goulding, M.O. Motherway, F. Shanahan, K. Nally, G. Dougan, and D. van Sinderen. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proceedings of the National Academy of Sciences of the United States of America 109 (6): 2108–2113.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Farnworth, E.R. 2005. The beneficial effects of fermented foods-potential probiotics around the world. Journal of Dietary Supplements 4: 3–4.Google Scholar
  61. Fei, Y., D. Liu, T. Luo, G. Chen, H. Wu, L. Li, and Y. Yu. 2014. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity. PLoS One 9 (11): e113792.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Fernández, M., and M. Zúñiga. 2006. Amino acid catabolic pathways of lactic acid bacteria. Critical Reviews in Microbiology 32 (3): 155.PubMedCrossRefGoogle Scholar
  63. Fleming, H.P., R.F. Mcfeeters, and E.G. Humphries. 1988. A fermentor for study of sauerkraut fermentation. Biotechnology & Bioengineering 31 (3): 189.CrossRefGoogle Scholar
  64. Forss, D.A. 1979. Review of the progress of dairy science: Mechanisms of formation of aroma compounds in milk and milk products. Journal of Dairy Research 46 (4): 691–706.CrossRefGoogle Scholar
  65. Forss, D.A., and S. Patton. 1966. Flavor of cheddar cheese. Journal of Dairy Science 49 (1): 89.PubMedCrossRefGoogle Scholar
  66. Fuka, M.M., S. Wallisch, M. Engel, et al. 2013. Dynamics of bacterial communities during the ripening process of different Croatian cheese types derived from raw ewe’s milk cheeses. Plos One 8 (11): e80734.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gänzle, M.G. 2014. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiology 37: 2–10.PubMedCrossRefGoogle Scholar
  68. Gänzle, M.G., and R. Follador. 2012. Metabolism of Oligosaccharides and starch in Lactobacilli: A review. Food Microbiology 3.Google Scholar
  69. Gänzle, M.G., J. Loponen, and M. Gobbetti. 2008. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science and Technology 19: 513–521.CrossRefGoogle Scholar
  70. Gebruers, K., E. Dornez, Z. Bedõ, M. Rakszegi, C.M. Courtin, and J.A. Delcour. 2010. Variability in Xylanase and Xylanase inhibition activities in different cereals in the HEALTHGRAIN diversity screen and contribution of environment and genotype to this variability in common wheat. Journal of Agricultural and Food Chemistry 58: 9362–9371.PubMedCrossRefGoogle Scholar
  71. Gibbons, J.G., L. Salichos, J.C. Slot, D.C. Rinker, K.L. Mcgary, J.G. King, et al. 2012. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus. Current Biology Cb 22 (15): 1403–1409.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gibbons, J.G., and D.C. Rinker. 2015. The genomics of microbial domestication in the fermented food environment. Current Opinion in Genetics & Development 35: 1–8.CrossRefGoogle Scholar
  73. Goesaert, H., K. Brijs, J.A. Delcour, K. Gebruers, W.S. Veraverbeke, and C.M. Courtin. 2005. Wheat flour constituents: How they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology; Official Journal of European Federation of Food Science and Technology. EFFoST; International Union of Food Science and Technology IUFoST 16: 12–30.Google Scholar
  74. Guyot, J.P., and J. Morlon-Guyot. 2001. Effect of different cultivation conditions on Lactobacillus manihotivorans OND32T, an amylolytic lactobacillus isolated from sour starch cassava fermentation. International Journal of Food Microbiology 67: 217–225.PubMedCrossRefGoogle Scholar
  75. Halász, A., Á. Baráth, L. Simon-Sarkadi, and W. Holzapfel. 1994. Biogenic amines and their production by microorganisms in food. Trends in Food Science & Technology 5 (94): 42–49.CrossRefGoogle Scholar
  76. Han, Y., B. Kim, J. Ban, J. Lee, B.J. Kim, B.S. Choi, S. Hwang, K. Ahn, and J. Kim. 2012. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis. Pediatric Allergy & Immunology 23 (7): 667–673.CrossRefGoogle Scholar
  77. Hashimoto, T. 2001. The cause on the abnormal accmulation of nitrite in pickles of Chinese cabbage (Brassica pekinesis Rupr). Nippon Shokuhin Kogyo Gakkaishi 48 (6): 409–415.CrossRefGoogle Scholar
  78. Hassan, A.N. 2008. ADSA foundation scholar award: Possibilities and challenges of exopolysaccharide-producing lactic cultures in dairy foods. Journal of Dairy Science 91 (4): 1282–1298.PubMedCrossRefGoogle Scholar
  79. Hassan, A.N., J.F. Frank, E.H. Marth, et al. 2001. Starter cultures and their use. Applied Dairy Microbiology.Google Scholar
  80. He, Ping, Z. Jia, and Z. Cheng. 2006. Dairy food processing technology. Beijing: China Light Industry Press.Google Scholar
  81. ———. 2004. Nutritional requirements of Lactobacillus delbrueckii subsp. lactis in a chemically defined medium. Current Microbiology 49: 341–345.PubMedCrossRefGoogle Scholar
  82. Hebert, E.M., G. Mamone, G. Picariello, R.R. Raya, G.S. De Giori, P. Ferranti, and F. Addeo. 2008. Characterization of the pattern of αs1- and β-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Applied and Environmental Microbiology 74: 3682–3689.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hebert, E.M., L. Saavedra, and P. Ferranti. 2010. Bioactive peptides derived from casein and whey proteins. In Biotechnology of lactic acid bacteria: Novel applications, ed. F. Mozzi, R. Raya, and G. Vignolo, 233–249. Ames: Wiley-Blackwell.CrossRefGoogle Scholar
  84. Hemme, D., and C. Foucaud. 2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional food. International Dairy Journal 14: 467–494.CrossRefGoogle Scholar
  85. Hesseltine, C.W., and M.L. Ray. 1988. Lactic acid bacteria in murcha and ragi. The Journal of Applied Bacteriology 64: 395–401.CrossRefGoogle Scholar
  86. Hole, A.S., I. Rud, S. Grimmer, S. Sigl, J. Narvhus, and S. Sahlstrøm. 2012. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. Journal of Agricultural and Food Chemistry 60: 6369–6375.PubMedCrossRefGoogle Scholar
  87. Hong, Tao, G. Jia, L. Li, Y. Su, et al. 2010. Influence of Streptococcus thermopiles on the fermentation process of yogurt and the application prospects. Forum and Summary 29: 5–8.Google Scholar
  88. Hounhouigan, D.J., M.J.R. Nout, C.M. Nago, J.H. Houben, and F.M. Rombouts. 1994. Microbiological changes in mawe during natural fermentation. World Journal of Microbiolgy and Biotechnology 10: 410–413.CrossRefGoogle Scholar
  89. ———. 1999. Use of starter cultures of lactobacilli and yeast in the fermentation of mawe, an African maize product. Tropical Science 39: 220–226.Google Scholar
  90. Hou, Cai J., C.Z. Long, and Z. Chen. 2013. Nitrite level of pickled vegetables in Northeast China. Food Control 29 (1): 7–10.CrossRefGoogle Scholar
  91. Hu, Y., A. Stromeck, J. Loponen, D. Lopes-Lutz, A. Schieber, and M.G. Gänzle. 2011. LC-MS/MS quantification of bioactive angiotensin I-Converting enzyme inhibitory peptides in Rye Malt sourdoughs. Journal of Agricultural and Food Chemistry 59: 11983–11989.PubMedCrossRefGoogle Scholar
  92. Hugenholtz, J., and M. Kleerebezem. 1999. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Current Opinion in Biotechnology 10 (5): 492–497.PubMedCrossRefGoogle Scholar
  93. Irlinger, F., and J. Mounier. 2009. Microbial interactions in cheese: Implications for cheese quality and safety. Current Opinion in Biotechnology 20 (2): 142–148.PubMedCrossRefGoogle Scholar
  94. Iwamoto, K., H. Tsuruta, and Y.R. Nishitaini. 2008. Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum atcc 14917 super(t). Systematic and Applied Microbiology 31 (4): 269–277.PubMedCrossRefGoogle Scholar
  95. Jänsch, A., M. Korakli, R.F. Vogel, and M.G. Gänzle. 2007. Glutathione reductase from Lactobacillus sanfranciscensis DSM20451T: Contribution to oxygen tolerance and thiol exchange reactions in wheat sourdoughs. Applied and Environmental Microbiology 73: 4469–4476.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jeong, S.H., J.Y. Jung, S.H. Lee, H.M. Jin, and C.O. Jeon. 2013. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. International Journal of Food Microbiology 164 (1): 46.PubMedCrossRefGoogle Scholar
  97. Ji, Y.S., H.N. Kim, H.J. Park, J.E. Lee, S.Y. Yeo, J.S. Yang, S.Y. Park, H.S. Yoon, G.S. Cho, and C.M. Franz. 2012. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus GG and Lactobacillus sakei NR28. Beneficial Microbes 3 (1): 13.PubMedCrossRefGoogle Scholar
  98. Jolly, L., and F. Stingele. 2001. Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. International Dairy Journal 11 (9SI): 733–745.CrossRefGoogle Scholar
  99. Jung, J.Y., S.H. Lee, J.M. Kim, M.S. Park, J.W. Bae, Y. Hahn, et al. 2011. Metagenomic analysis of kimchi, a traditional korean fermented food. Applied and Environmental Microbiology 77 (7): 2264–2274.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jung, J.Y., S.H. Lee, H.J. Lee, H.Y. Seo, W.S. Park, and C.O. Jeon. 2012a. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology 153 (3): 378–387.PubMedCrossRefGoogle Scholar
  101. Jung, J.Y., S.H. Lee, H.J. Lee, H. Seo, W. Park, and C.O. Jeon. 2012b. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology 153 (3): 378–387.PubMedCrossRefGoogle Scholar
  102. Jung, M.J., Y.D. Nam, S.W. Roh, and J.W. Bae. 2012a. Unexpected convergence of fungal and bacterial communities during fermentation of traditional korean alcoholic beverages inoculated with various natural starters. Food Microbiology 30 (1): 112–123.PubMedCrossRefGoogle Scholar
  103. Jung, M.J., Y.D. Nam, S.W. Roh, and J.W. Bae. 2012b. Unexpected convergence of fungal and bacterial communities during fermentation of traditional korean alcoholic beverages inoculated with various natural starters. Food Microbiology 30 (1): 112–123.PubMedCrossRefGoogle Scholar
  104. Jung, J.Y., S.H. Lee, H.M. Jin, Y. Hahn, E.L. Madsen, and C.O. Jeon. 2013. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. International Journal of Food Microbiology 163 (2–3): 171–179.PubMedCrossRefGoogle Scholar
  105. Kalac, P., J. Spicka, M. Krizek, and T. Pelikanova. 2000. Changes in biogenic amine concentrations during sauerkraut storage. Food Chemistry 69 (69): 309–314.CrossRefGoogle Scholar
  106. Kalač, P., J. Špička, M. KřıŽek, and T. Pelikánová. 2000. The effects of lactic acid bacteria inoculants on biogenic amines formation in sauerkraut. Food Chemistry 70 (3): 355–359.CrossRefGoogle Scholar
  107. Katina, K., A. Laitila, R. Juvonen, K.-H. Liukkonen, S. Kariluoto, V. Piironen, R. Landberg, P. Åman, and K. Poutanen. 2007. Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiology 24: 175–186.PubMedCrossRefGoogle Scholar
  108. Kayode, A.P.P., D.J. Hounhouigan, and M.J.R. Nout. 2007. Impact of brewing process operations on phytate, phenolic compounds and in-vitro solubility of iron and zinc in opaque sorghum beer. Leben Smittel- Wissensc Haftund Technologie 40: 834–841.CrossRefGoogle Scholar
  109. Kenny, O.M., R.J. Fitzgerald, G. O’Cuinn, T.P. Beresford, and K.N. Jordan. 2003. Growth phase and growth medium effects on the peptidase activities of Lactobacillus helveticus. International Dairy Journal 13: 509–516.CrossRefGoogle Scholar
  110. Khalid, N.M., M. El-Soda, and E.H. Marth. 1991. Peptidase hydrolases of Lactobacillus helveticus and Lactobacillus delbrueckii ssp. bulgaricus. J. Dairy Science 74: 29–45.CrossRefGoogle Scholar
  111. Kim, M., and J. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. International Journal of Food Microbiology 103 (1): 91–96.PubMedCrossRefGoogle Scholar
  112. Kim, Hannah, Hyunjoon Park, Jieun Lee, Heejae Lee, and Heuynkil Shin. 2013. Functionality and safety of lactic bacterial strains from Korean kimchi. Food Control 31 (2): 467–473.CrossRefGoogle Scholar
  113. Knight, S., S. Klaere, B. Fedrizzi, and M.R. Goddard. 2015. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Scientific Reports 5 (14233): 14233.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kobayashi, Y., S. Okamoto, T. Shimazaki, Y. Ochiai, and F. Sato. 1987. Synthesis and physiological activities of both enantiomers of coriolic acid and their geometric isomers. Tetrahedron Letters 28: 3959–3962.CrossRefGoogle Scholar
  115. Kook, M.C., and M.J. Seo. 2010. Enhancement of γ-amminobutyric acid production by Lactobacillus sakei B2–16 expressing glutamate decarboxylase from Lactobacillus plantarum ATCC 14917. Applied Biological Chemistry 53 (6): 816–820.Google Scholar
  116. Korhonen, H., and A. Pihlanto. 2006. Bioactive peptides: Production and functionality. International Dairy Journal 16 (9): 945–960.CrossRefGoogle Scholar
  117. Koyanagi, T., M. Kiyohara†, H. Matsui, K. Yamamoto, T. Kondo, T. Katayama, et al. 2011. Pyrosequencing survey of the microbial diversity of ‘ narezushi ’, an archetype of modern japanese sushi. Letters in Applied Microbiology 53 (6): 635–640.PubMedCrossRefGoogle Scholar
  118. Koyanagi, T., A. Nakagawa, M. Kiyohara, H. Matsui, K. Yamamoto, F. Barla, et al. 2013. Pyrosequencing analysis of microbiota in kaburazushi, a traditional medieval sushi in Japan. Bioscience Biotechnology & Biochemistry 77 (10): 2125–2130.CrossRefGoogle Scholar
  119. Kunji, E.R.S., I. Mierau, A. Hagting, B. Poolman, and W.N. Konings. 1996. The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70: 187–221.PubMedCrossRefGoogle Scholar
  120. Lamothe, G.T., L. Jolly, B. Mollet, and F. Stingele. 2002. Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp bulgaricus. Archives of Microbiology 178 (3): 218–228.PubMedCrossRefGoogle Scholar
  121. Law, B.A., M. Castanon, and M.E. Sharpe. 1976. The effect of non-starter bacteria on the chemical composition and the flavour of Cheddar cheese. Journal of Dairy Research 43 (1): 117–125.CrossRefGoogle Scholar
  122. Laws, A.P., and V.M. Marshall. 2001. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. International Dairy Journal 11 (9SI): 709–721.CrossRefGoogle Scholar
  123. Lee, J., K.T. Hwang, M.S. Heo, J.H. Lee, and K.Y. Park. 2005. Resistance of Lactobacillus plantarum KCTC 3099 from Kimchi to oxidative stress. Journal of Medicinal Food 8 (3): 299–304.PubMedCrossRefGoogle Scholar
  124. Lee, H., H. Yoon, Y. Ji, H. Kim, H. Park, J. Lee, H. Shin, and W. Holzapfel. 2011. Functional properties of Lactobacillus strains isolated from kimchi. International Journal of Food Microbiology 145 (1): 155–161.PubMedCrossRefGoogle Scholar
  125. Leroy, F., and L. De Vuyst. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science and Technology 15: 67–78.CrossRefGoogle Scholar
  126. Lessard, M., C. Viel, B. Boyle, et al. 2014. Metatranscriptome analysis of fungal strains Penicillium camemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese. BMC Genomics 15 (1): 1–13.CrossRefGoogle Scholar
  127. Lestienne, I., P. Besancon, B. Caporiccio, V. Lullien-Pellerin, and S. Treche. 2005. Iron and zinc in vitro availability in pearl millet flours (Pennisetum glaucum) with varying phytate, tannin, and fiber contents. Journal of Agricultural and Food Chemistry 53: 3240–3247.PubMedCrossRefGoogle Scholar
  128. Lhomme, E., A. Lattanzi, X. Dousset, et al. 2015a. Lactic acid bacterium and yeast microbiotas of sixteen French traditional sourdoughs. International Journal of Food Microbiology 215: 161.PubMedCrossRefGoogle Scholar
  129. Lhomme, E., S. Orain, P. Courcoux, et al. 2015b. The predominance of Lactobacillus sanfranciscensis in French organic sourdoughs and its impact on related bread characteristics[J]. International Journal of Food Microbiology 213: 40.PubMedCrossRefGoogle Scholar
  130. Li, X., Q. Xu, T. Jiang, S. Fang, G. Wang, J. Zhao, H. Zhang, and W. Chen. 2016. A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food & Function 7 (12): 4851.CrossRefGoogle Scholar
  131. Liu, S.Q., R.V. Asmundson, R. Holland, and V.L. Crow. 1997. Acetaldehyde metabolism by Leuconostoc mesenteroides subsp. cremoris under stress conditions. International Dairy Journal 7: 175–183.CrossRefGoogle Scholar
  132. Looijesteijn, P.J., W. van Casteren, R. Tuinier, C. Doeswijk-Voragen, and J. Hugenholtz. 2000. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp cremoris in continuous cultures. Journal of Applied Microbiology 89 (1): 116–122.PubMedCrossRefGoogle Scholar
  133. Loponen, J., P. Kanerva, C. Zhang, T. Sontag-Strohm, H. Salovaara, and M.G. Gänzle. 2009. Prolamin hydrolysis and pentosan solubilization in germinated-rye sourdoughs determined by chromatographic and immunological methods. Journal of Agricultural and Food Chemistry 57: 746–753.PubMedCrossRefGoogle Scholar
  134. Lu, Z.H., L.T. Li, W.H. Min, F. Wang, and E. Tatsumi. 2005. The effects of natural fermentation on the physical properties of reice flour and the rheological characteristics of rice noodles. International Journal of Food Science and Technology 40: 985–992.CrossRefGoogle Scholar
  135. Martinez-Murcia, A.J., and M.D. Collins. 1990. A phylogenetic analysis of the genus Leuconostoc based on reverse transcriptase sequencing of 16 S rRNA. International Journal of Systematic Bacteriology 58 (1): 73–83.Google Scholar
  136. Marshall, V.M.E., and A.Y. Tamime. 1997. Physiology and biochemistry of fermented milks. Microbiology and biochemistry of cheese and fermented milk, 153–192. Boston: Springer.CrossRefGoogle Scholar
  137. Marsh, A.J., O. O’Sullivan, C. Hill, R.P. Ross, and P.D. Cotter. 2013. Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One 8 (7): e69371.PubMedPubMedCentralCrossRefGoogle Scholar
  138. ———. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology 38 (2): 171–178.PubMedCrossRefGoogle Scholar
  139. Matar, C., J.G. LeBlanc, L. Martin, and G. Perdigon. 2003. Biologically active peptides released from fermented milk: Role and functions. In Handbook of fermented functional foods, ed. E.R. Farnworth, 1st ed., 177–201. Boca Raton: CRC Press.Google Scholar
  140. Meisel, H. 2004. Multifunctional peptides encrypted in milk proteins. BioFactors 21: 55–61.PubMedCrossRefGoogle Scholar
  141. Minervini, F., A. Lattanzi, M. De Angelis, G. Celano, and M. Gobbetti. 2015. House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs. Food Microbiology 52: 66–76.PubMedCrossRefGoogle Scholar
  142. Moller, M.S., F. Fredslund, A. Majumder, H. Nakai, J.-C.N. Poulsen, L. Lo Leggio, B. Svensson, and M. Abou Hachem. 2012. Enzymology and structure of the GH13_31 glucan 1,6- -glucosidase that confers Isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. Journal of Bacteriology 194: 4249–4259.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Montel, M.C., S. Buchin, A. Mallet, C. Delbes-Paus, D.A. Vuitton, N. Desmasures, et al. 2014. Traditional cheeses: Rich and diverse microbiota with associated benefits. International Journal of Food Microbiology 177 (54): 136–154.PubMedCrossRefGoogle Scholar
  144. Mouquet, R.C., V.C. Icard, J.P. Guyot, T.E. Hassane, I. Rochette, and S. Treche. 2008. Consumption pattern, biochemical composition and nutritional value of fermented pearl millet gruels in Burkina Faso. International Journal of Food Science and .Nutrition 59: 716–729.CrossRefGoogle Scholar
  145. Muganga, L., X. Liu, F. Tian, et al. 2015. Screening for lactic acid bacteria based on antihyperglycaemic and probiotic potential and application in synbiotic set yoghurt. Journal of Functional Foods 16: 125–136.CrossRefGoogle Scholar
  146. Nakai, H., M.J. Baumann, B.O. Petersen, Y. Westphal, H. Schols, A. Dilokpimol, M.A. Hachem, S.J. Lahtinen, J.Ø. Duus, and B. Svensson. 2009. The maltodextrin transport system and metabolism in Lactobacillus acidophilus NCFM and production of novel α-glucosides through reverse phosphorolysis by maltose phosphorylase. The FEBS Journal 276: 7353–7365.PubMedCrossRefGoogle Scholar
  147. Nout, M.J.R. 1987. Chemical composition and nutrient balance of Busaa, a Kenyan opaque maize beer. Chem. Mikrobiol. Technol. Lebensm. 11: 51–55.Google Scholar
  148. Nout, M.J.R., P.K. Sarkar, and L.R. Beuchat. 2007. Indigenous fermented foods. In Food microbiology: Fundamentals and Frontiers, ed. M.P. Doyle and L.R. Beuchat, 817–835. Washington, DC: ASM Press.Google Scholar
  149. Nout, M.J.R. 2009. Rich nutrition from the poorest – Cereal fermentations in Africa and Asia. Food Microbiology 26: 685–692.PubMedCrossRefGoogle Scholar
  150. O’Sullivan, D.J., P.D. Cotter, O. O’Sullivan, L. Giblin, P.L. McSweeney, and J.J. Sheehan. 2015. Temporal and spatial differences in microbial composition during the manufacture of a continental-type cheese. Applied and Environmental Microbiology 81: 2525–2533.PubMedPubMedCentralCrossRefGoogle Scholar
  151. Oh, C.K., M.C. Oh, and S.H. Kim. 2004. The depletion of sodium nitrite by lactic acid bacteria isolated from kimchi. Journal of Medicinal Food 7 (1): 38.PubMedCrossRefGoogle Scholar
  152. Peant, B., G. LaPointe, C. Gilbert, D. Atlan, P. Ward, and D. Roy. 2005. Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology-Sgm 151 (6): 1839–1851.CrossRefGoogle Scholar
  153. Pederson, C. S. 1969. Bulletin: Number 824: The Sauerkraut Fermentation.Google Scholar
  154. Peñas, E., J. Frias, B. Sidro, and C. Vidal-Valverde. 2010. Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut. Food Chemistry 123 (1): 143–150.CrossRefGoogle Scholar
  155. Pérez-Díaz, I.M., J. Hayes, E. Medina, K. Anekella, K. Daughtry, S. Dieck, M. Levi, R. Price, N. Butz, Z. Lu, and M.A. Azcarate-Peril. 2017. Reassessment of the succession of lactic acid bacteria in commercial cucumber fermentations and physiological and genomic features associated with their dominance. Food Microbiology 63: 217–227.PubMedCrossRefGoogle Scholar
  156. Plengvidhya, V., F. Breidt Jr., Z. Lu, and H.P. Fleming. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology 73 (23): 7697–7702.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Poutanen, K., L. Flander, and K. Katina. 2009. Sourdough and cereal fermentation in a nutritional perspective. Food Microbiology 26: 693–699.PubMedCrossRefGoogle Scholar
  158. Purwandari, U., N.P. Shah, and T. Vasiljevic. 2007. Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. International Dairy Journal 17 (11): 1344–1352.CrossRefGoogle Scholar
  159. Rabie, M.A., H. Siliha, S. El-Saidy, A.A. El-Badawy, and F.X. Malcata. 2011. Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chemistry 129 (4): 1778–1782.CrossRefGoogle Scholar
  160. Ragaee, S., E.-S.M. Abdel-Aal, and M. Noaman. 2006. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry 98: 32–38.CrossRefGoogle Scholar
  161. Rasmussen, C.V., H. Boskov Hansen, Å. Hansen, and L. Melchior Larsen. 2001. pH-, temperature- and time-dependent activities of endogenous Endo-β-D-Xylanase, β-D-Xylosidase and α-L-Arabinofuranosidase in extracts from Ungerminated Rye (Secale cereale L.) Grain. J. Cereal Science 34: 49–60.CrossRefGoogle Scholar
  162. Rizzello, C.G., I. Cavoski, J. Turk, et al. 2015. The organic cultivation of Triticum turgidum spp. durum reflects on the axis flour, sourdough fermentation and bread. Applied & Environmental Microbiology 81: 3192–3204.CrossRefGoogle Scholar
  163. Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal 12 (PII S0958-6946(01)00160-12-3SI): 163–171.CrossRefGoogle Scholar
  164. Sánchez, E., J.C. Nieto, S. Vidal, et al. 2017. Fermented milk containing Lactobacillus paracasei subsp. paracasei CNCM I-1518 reduces bacterial translocation in rats treated with carbon tetrachloride. Journal of Hepatology 7: S333.Google Scholar
  165. Sang, H.J., S.H. Lee, Y.J. Ji, E.J. Choi, and O.J. Che. 2013. Microbial succession and metabolite changes during long-term storage of Kimchi. Journal of Food Science 78 (5): M763–M769.CrossRefGoogle Scholar
  166. Savijoki, K., H. Ingmer, and P. Varmanen. 2006. Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology 71: 394–406.PubMedCrossRefGoogle Scholar
  167. Seok, J.H., K.B. Park, Y.H. Kim, M.O. Bae, M.K. Lee, and S.H. Oh. 2008. Production and characterization of Kimchi with enhanced levels of γ-Aminobutyric acid. Food Science & Biotechnology 17 (5): 940–946.Google Scholar
  168. Settanni, Luca, and Aldo Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology 121 (2): 123–138.PubMedCrossRefGoogle Scholar
  169. Shewry, P.R., V. Piironen, A.-M. Lampi, M. Edelmann, S. Kariluoto, T. Nurmi, R. Fernandez-Orozco, A.A.M. Andersson, P. Aman, A. Fraś, et al. 2010. Effects of genotype and environment on the content and composition of phytochemicals and dietary fiber components in rye in the HEALTHGRAIN diversity screen. Journal of Agricultural and Food Chemistry 58: 9372–9383.PubMedCrossRefGoogle Scholar
  170. Sieuwerts, S., F.A. de Bok, J. Hugenholtz, and V.H.V. Je. 2008. Unraveling microbial interactions in food fermentations: From classical to genomics approaches. Applied and Environmental Microbiology 74 (16): 4997–5007.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Sifer, M., Vernie’re, C., Galissaires, L., Castro, A., Lopez, G., Wacher, C. and Guyot, J. P. 2005. DGGE community analysis of lactic acid fermented pearl millet-based infant gruels (ben-saalga, ben-kida) as a tool to characterize relatedness between traditional small-scale production units. In: 8th Symposium on Bacterial Genetics and Ecology, BAGECO-8. vol. 8, pp. 1. Lyon, France.Google Scholar
  172. Silva, S., and X. Malcata. 2005. Caseins as source of bioactive peptides. International Dairy Journal 15: 1–15.CrossRefGoogle Scholar
  173. Singh, A.K., J. Rehal, A. Kaur, and G. Jyot. 2015. Enhancement of attributes of cereals by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition 55: 1575–1589.PubMedCrossRefGoogle Scholar
  174. Soni, S.K., and D.K. Sandhu. 1999. Fermented cereal products. In Biotechnology: Food fermentation, ed. V.K. Joshi and A. Pandey, 895–949. Ernakulam: Educational Publishers.Google Scholar
  175. Songré-Ouattara, L.T., C. Mouquet-Rivier, C. Icard-Vernière, C. Humblot, B. Diawara, and J.P. Guyot. 2008. Enzyme activities of lactic acid bacteria from a pearl millet fermented gruel (ben-saalga) of functional interest in nutrition. International Journal of Food Microbiology 128: 395–400.PubMedCrossRefGoogle Scholar
  176. Spoelstra, S.F. 1985. Nitrate in silage. Grass & Forage Science 40 (1): 1–11.CrossRefGoogle Scholar
  177. Steinkraus, K. H. 1996. Handbook of indigenous fermented foods. 2nd ed., rev. and expanded. Food Science and Technology. USA No 73.Google Scholar
  178. Stellato, G., F.F. De, S.A. La, et al. 2015. Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy-processing environment. Applied & Environmental Microbiology 81 (22): 7893–7904.CrossRefGoogle Scholar
  179. Stingele, F., J.R. Neeser, and B. Mollet. 1996. Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. Journal of Bacteriology 178 (6): 1680–1690.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Sun, Z., W. Liu, Q. Bao, J. Zhang, Q. Hou, L. Kwok, et al. 2014. Investigation of bacterial and fungal diversity in tarag using high-throughput sequencing. Journal of Dairy Science 97 (10): 6085–6096.PubMedCrossRefGoogle Scholar
  181. Svensson, L., B. Sekwati-Monang, D.L. Lutz, A. Schieber, and M.G. Gänzle. 2010. Phenolic acids and flavonoids in nonfermented and fermented Red Sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry 58: 9214–9220.PubMedCrossRefGoogle Scholar
  182. Szwajkowska, M., A. Wolanciuk, J. Barłowska, J. Król, and Z. Litwiñczuk. 2011. Bovine milk proteins as the source of bioactive peptides influencing the consumers’ immune system – A review. Animal Science Papers and Reports 29: 269–280.Google Scholar
  183. Tamang, J.P., P.K. Sarkar, and C.W. Hesseltine. 1988. Traditional fermented foods and beverages of Darjeeling and Sikkim – A review. Journal of Science and Food Agriculture 44: 375–385.CrossRefGoogle Scholar
  184. Tamime, A. Y. and McNulty, D. 1999. Kishkda dried fermented milk/cereal mixture. 4. Microbiological quality. Lait. 79:449–456.CrossRefGoogle Scholar
  185. Tamime, A.Y., R.K. Robinson, A.Y. Tamime, et al. 2007. Biochemistry of fermentation.[M]// Tamime and Robinson’s Yoghurt. 535–607.Google Scholar
  186. Tanous, Catherine, Agnieszka Kieronczyk, Sandra Helinck, et al. 2002. Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie van Leeuwenhoek 82 (1–4): 271.PubMedCrossRefGoogle Scholar
  187. Taylor, J.R.N., T.J. Schober, and S.R. Bean. 2006. Novel food and non-food uses for sorghum and millets. Journal of Cereal Science 44: 252–271.CrossRefGoogle Scholar
  188. Thiele, C., S. Grassl, and M. Ganzle. 2004. Gluten hydrolysis and Depolymerization during sourdough fermentation. Journal of Agricultural and Food Chemistry 52: 1307–1314.PubMedCrossRefGoogle Scholar
  189. Thompson, J. 1987. Regulation of sugar transport and metabolism in lactic acid bacteria[J]. FEMS Microbiology Letters 46 (3): 221–231.CrossRefGoogle Scholar
  190. Tian, F., Y. Xiao, X. Li, et al. 2015. Protective effects of Lactobacillus plantarum CCFM8246 against copper toxicity in mice. PLoS One 10 (11): e0143318.PubMedPubMedCentralCrossRefGoogle Scholar
  191. Tou, E.H., J.P. Guyot, C. Mouquet-Rivier, I. Rochette, E. Counil, A.S. Traoré, and S. Treche. 2006. Study through surveys and fermentation kinetics of the traditional processing of pearl millet (Pennisetum glaucum) into ben-saalga, a fermented gruel from Burkina Faso. International Journal of Food Microbiology 106: 52–60.PubMedCrossRefGoogle Scholar
  192. Turpin, W., C. Humblot, and J. Guyot. 2011. Genetic screening of functional properties of lactic acid bacteria in a fermented pearl millet slurry and in the metagenome of fermented starchy foods. Applied and Environmental Microbiology 77: 8722–8734.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Vaningelgem, F., M. Zamfir, T. Adriany, and L. De Vuyst. 2004. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium. Journal of Applied Microbiology 97 (6): 1257–1273.PubMedCrossRefGoogle Scholar
  194. Vedamuthu, E.R. 1994. The dairy Leuconostoc: Use in dairy products. Journal of Dairy Science 77 (9): 2725–2737.CrossRefGoogle Scholar
  195. Vilela, D.M., G.V. Pereira, C.F. Silva, L.R. Batista, and R.F. Schwan. 2010. Molecular ecology and polyphasic characterization of the microbiota associated with semi-dry processed coffee (coffea arabica l.). Food Microbiology 27 (8): 1128–1135.PubMedCrossRefGoogle Scholar
  196. Vogel, R.F., M. Lohmann, A.N. Weller, M. Hugas, and W.P. Hammes. 1991. Structural similarity and distribution of small cryptic plasmids of Lactobacillus curvatus and L. sake. Fems Microbiology Letters 68 (2): 183.PubMedCrossRefGoogle Scholar
  197. Vos, W.M., and E.E. Vaughan. 1994. Genetics of lactose utilization in lactic acid bacteria[M]. FEMS Microbiology Reviews.: 217–237.PubMedCrossRefGoogle Scholar
  198. Ward, D.M., R. Weller, and M.M. Bateson. 1990. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345 (6270): 63–65.PubMedCrossRefGoogle Scholar
  199. Wei, Dong, B. Wen, Z. Gui Hong, and L. Feng. 2009. Characteristics of Lactobacillus bulgaricus and its application. Forum and Summary 28: 10–14.Google Scholar
  200. Welman, A.D., and I.S. Maddox. 2003. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnology 21 (6): 269–274.PubMedCrossRefGoogle Scholar
  201. Widder, S., R.J. Allen, T. Pfeiffer, et al. 2016. Challenges in microbial ecology: Building predictive understanding of community function and dynamics. ISME Journal 10 (11): 2557–2568.PubMedCrossRefGoogle Scholar
  202. Wieser, H. 2007. Chemistry of gluten proteins. Food Microbiology 24: 115–119.PubMedCrossRefGoogle Scholar
  203. Wisselink, H.W., R.A. Weusthuis, G. Eggink, J. Hugenholtz, and G.J. Grobben. 2002. Mannitol production by lactic acid bacteria: A review. International Dairy Journal 12 (2–3): 151–161.CrossRefGoogle Scholar
  204. Wolfe, B.E., J.E. Button, M. Santarelli, et al. 2014. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158 (2): 422.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Wouters, J.T.M., E.H.E. Ayad, J. Hugenholtz, et al. 2002. Microbes from raw milk for fermented dairy products. International Dairy Journal 12 (2): 91–109.CrossRefGoogle Scholar
  206. Wu, Q., C.K.W. Cheung, and N.P. Shah. 2015. Towards galactose accumulation in dairy foods fermented by conventional starter cultures: Challenges and strategies. Trends in Food Science & Technology 41 (1): 24–36.CrossRefGoogle Scholar
  207. Xia, Y., X. Liu, G. Wang, H. Zhang, Z. Xiong, Y. Sun, and L. Ai. 2017. Characterization and selection of lactobacillus brevis starter for nitrite degradation of Chinese pickle. Food Control 78: 126–131.CrossRefGoogle Scholar
  208. Xing, J., G. Wang, Q. Zhang, X. Liu, Z. Gu, H. Zhang, Y.Q. Chen, and W. Chen. 2015. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: A comparison with traditional methods. PLoS One 10 (3): e0119058.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Xiong, T., F. Peng, Y.Y. Liu, Y.J. Deng, X.Y. Wang, and M.Y. Xie. 2014. Fermentation of Chinese sauerkraut in pure culture and binary co-culture with Leuconostoc mesenteroides and Lactobacillus plantarum. Lwt-Food Science and Technology 59 (2): 713–717.CrossRefGoogle Scholar
  210. Yang, X. 2004. Study on the control of nitrite content in the pickled of potherb mustard. Journal of Chinese Institute of Food Science & Technology 4 (1): 48–51.Google Scholar
  211. Yu, Ru Y. 2014. Dairy and beverage technology. Beijing: China Light Industry Press.Google Scholar
  212. Yvon, M., and L. Rijnen. 2001. Cheese flavour formation by amino acid catabolism. International Dairy Journal 11 (4): 185–201.CrossRefGoogle Scholar
  213. Zhai, Q., G. Wang, J. Zhao, X. Liu, F. Tian, H. Zhang, and W. Chen. 2013. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Applied & Environmental Microbiology 79 (5): 1508.CrossRefGoogle Scholar
  214. Zhai, Q., G. Wang, J. Zhao, X. Liu, A. Narbad, Y.Q. Chen, H. Zhang, F. Tian, and W. Chen. 2014. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Applied & Environmental Microbiology 80 (13): 4063–4071.CrossRefGoogle Scholar
  215. Zhai, Q., Y. Xiao, F. Tian, et al. 2015a. Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice. RSC Advances 5 (6): 4648–4658.CrossRefGoogle Scholar
  216. Zhai, Q., R. Yin, L. Yu, G. Wang, F. Tian, R. Yu, J. Zhao, X. Liu, Y.Q. Chen, and H. Zhang. 2015b. Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control 54: 23–30.CrossRefGoogle Scholar
  217. Zhang, W.X., Z.W. Qiao, Y.Q. Tang, C. Hu, Q. Sun, S. Morimura, and K. Kida. 2007. Analysis of the fungal community in zaopei during the production of Chinese Luzhou-flavour liquor. Journal of the Institute of Brewing 113: 21–27.CrossRefGoogle Scholar
  218. 박건영, & 최홍식. 1992. Kimchi and Nitrosamines. Journal of the Korean Society of Food & Nutrition 21 (1): 109–116.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Quadram Institute BioscienceNorwichUK

Personalised recommendations