Advertisement

Metabolites of Lactic Acid Bacteria

  • Wanqiang WuEmail author
  • Haitao Li
Chapter

Abstract

Lactic acid fermentation is among the oldest forms of food preservation, but to extend the shelf life is only the start of which lactic acid bacteria (LAB) affects our foods. For example, lactic acid fermentation might develop specific textures, enrich some characteristic sensory properties, and even afford human health maintaining and promoting benefits. It has long been believed that LAB exerts those functions by their various metabolites. To this end, their potential use as cell factories for desired microbial metabolites is receiving extensive attention by the food and pharmaceutical industries. More importantly, the application of genetic engineering and metabolic engineering of LAB promotes the production of both the primary and the more complex secondary metabolisms. This chapter will summarize recent findings about metabolites (such as lactic acid, short-chain fatty acids, γ-amino butyric acid, conjugated linoleic acid, bacteriocin and bacteriocin-like, etc.) of LAB as well as their potential in industries.

Keywords

Lactic acid bacteria (LAB) Metabolites Applications Biochemical mechanism 

References

  1. Ahmad, V., M.S. Khan, Q.M.S. Jamal, M.A. Alzohairy, M.A. Al Karaawi, and M.U. Siddiqui. 2017. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents 49 (1): 1–11.  https://doi.org/10.1016/j.ijantimicag.2016.08.016.CrossRefPubMedGoogle Scholar
  2. Akoglu, B., A. Loytved, H. Nuiding, S. Zeuzem, and D. Faust. 2015. Probiotic Lactobacillus casei Shirota improves kidney function, inflammation and bowel movements in hospitalized patients with acute gastroenteritis – A prospective study. Journal of Functional Foods 17: 305–313.  https://doi.org/10.1016/j.jff.2015.05.021.CrossRefGoogle Scholar
  3. Albers, R., R.P.J. van der Wielen, E.J. Brink, H.F.J. Hendriks, V.N. Dorovska-Taran, and I.C.M. Mohede. 2003. Effects of cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid (CLA) isomers on immune function in healthy men. European Journal of Clinical Nutrition 57 (4): 595–603.  https://doi.org/10.1038/sj.ejcn.1601585.CrossRefPubMedGoogle Scholar
  4. Allen, R.H., and S.P. Stabler. 2008. Identification and quantitation of cobalamin and cobalamin analogues in human feces. American Journal of Clinical Nutrition 87 (5): 1324–1335.CrossRefGoogle Scholar
  5. Antonio, M.A.D., S.E. Hawes, and S.L. Hillier. 1999. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. Journal of Infectious Diseases 180 (6): 1950–1956.  https://doi.org/10.1086/315109.CrossRefPubMedGoogle Scholar
  6. Aslim, B., and E. Kilic. 2006. Some probiotic properties of vaginal lactobacilli isolated from healthy women. Japanese Journal of Infectious Diseases 59 (4): 249–253.PubMedGoogle Scholar
  7. Bacher, A., S. Eberhardt, M. Fischer, K. Kis, and G. Richter. 2000. Biosynthesis of vitamin b2 (riboflavin). Annual Review of Nutrition 20: 153–167.  https://doi.org/10.1146/annurev.nutr.20.1.15320/1/153 [pii].CrossRefPubMedGoogle Scholar
  8. Belaiche, J., J. Zittoun, J. Marquet, J. Yvart, and D. Cattan. 1987. In vitro effect of duodenal juice on R binders cobalamin complexes in subjects with pancreatic insufficiency: Correlation with cobalamin absorption. Gut 28 (1): 70–74.CrossRefGoogle Scholar
  9. Belury, M.A., S.Y. Moya-Camarena, M. Lu, L.L. Shi, L.M. Leesnitzer, and S.G. Blanchard. 2002. Conjugated linoleic acid is an activator and ligand for peroxisome proliferator-activated receptor-gamma (PPAR gamma). Nutrition Research 22(7): 817–824. Pii S0271-5317(02)00393-7.  https://doi.org/10.1016/S0271-5317(02)00393-7.CrossRefGoogle Scholar
  10. Belury, M.A., A. Mahon, and S. Banni. 2003. The conjugated linoleic acid (CLA) isomer, t10c12-CLA, is inversely associated with changes in body weight and serum leptin in subjects with type 2 diabetes mellitus. Journal of Nutrition 133 (1): 257s–260s.CrossRefGoogle Scholar
  11. Benjamin, S., and F. Spener. 2009. Conjugated linoleic acids as functional food: An insight into their health benefits. Nutrition & Metabolism 6: Artn 36.  https://doi.org/10.1186/1743-7075-6-36.CrossRefGoogle Scholar
  12. Birn, H. 2006. The kidney in vitamin B12 and folate homeostasis: Characterization of receptors for tubular uptake of vitamins and carrier proteins. American Journal of Physiology. Renal Physiology 291(1): F22–F36. 291/1/F22 [pii].  https://doi.org/10.1152/ajprenal.00385.2005.CrossRefGoogle Scholar
  13. Breukink, E., I. Wiedemann, C. van Kraaij, O.P. Kuipers, H.G. Sahl, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286 (5448): 2361–2364.  https://doi.org/10.1126/science.286.5448.2361.CrossRefPubMedGoogle Scholar
  14. Burgess, C., M. O’Connell-Motherway, W. Sybesma, J. Hugenholtz, and D. van Sinderen. 2004. Riboflavin production in Lactococcus lactis: Potential for in situ production of vitamin-enriched foods. Applied and Environmental Microbiology 70 (10): 5769–5777.  https://doi.org/10.1128/Aem.70.10.5769-5777.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Calo-Mata, P., S. Arlindo, K. Boehme, T. de Miguel, A. Pascoal, and J. Barros-Velazquez. 2008. Current applications and future trends of lactic acid bacteria and their bacteriocins for the biopreservation of aquatic food products. Food and Bioprocess Technology 1 (1): 43–63.  https://doi.org/10.1007/s11947-007-0021-2.CrossRefGoogle Scholar
  16. Chen, C., S.S. Zhao, G.F. Hao, H.Y. Yu, H.X. Tian, and G.Z. Zhao. 2017. Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties 20: S316–S330.  https://doi.org/10.1080/10942912.2017.1295988.CrossRefGoogle Scholar
  17. Cheng, H.F. 2010. Volatile flavor compounds in yogurt: A review. Critical Reviews in Food Science and Nutrition 50(10): 938–950. Pii 930112396.  https://doi.org/10.1080/10408390903044081.CrossRefGoogle Scholar
  18. Cheng, Z., M. Elmes, D.R.E. Abayasekara, and D.C. Wathes. 2003. Effects of conjugated linoleic acid on prostaglandins produced by cells isolated from maternal intercotyledonary endometrium, fetal allantochorion and amnion in late pregnant ewes. Biochimica et Biophysica Acta-Molecular and Cell Biology of Lipids 1633 (3): 170–178.  https://doi.org/10.1016/S1388-1981(03)00123-9.CrossRefGoogle Scholar
  19. Chujo, H., M. Yamasaki, S. Nou, N. Koyanagi, H. Tachibana, and K. Yamada. 2003. Effect of conjugated linoleic acid isomers on growth factor-induced proliferation of human breast cancer cells. Cancer Letters 202 (1): 81–87.  https://doi.org/10.1016/S0304-3835(03)00478-6.CrossRefPubMedGoogle Scholar
  20. Cleveland, J., T.J. Montville, I.F. Nes, and M.L. Chikindas. 2001. Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology 71 (1): 1–20.  https://doi.org/10.1016/S0168-1605(01)00560-8.CrossRefPubMedGoogle Scholar
  21. Cohen, H., W.M. Weinstein, and R. Carmel. 2000. Heterogeneity of gastric histology and function in food cobalamin malabsorption: Absence of atrophic gastritis and achlorhydria in some patients with severe malabsorption. Gut 47 (5): 638–645.CrossRefGoogle Scholar
  22. Conti, C., C. Malacrino, and P. Mastromarino. 2009. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. Journal of Physiology and Pharmacology 60: 19–26.PubMedGoogle Scholar
  23. Cummings, J.H., E.W. Pomare, W.J. Branch, C.P. Naylor, and G.T. Macfarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28 (10): 1221–1227.CrossRefGoogle Scholar
  24. De Vadder, F., P. Kovatcheva-Datchary, D. Goncalves, J. Vinera, C. Zitoun, A. Duchampt, F. Backhed, and G. Mithieux. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (1–2): 84–96.  https://doi.org/10.1016/j.cell.2013.12.016.CrossRefPubMedGoogle Scholar
  25. Degnan, P.H., N.A. Barry, K.C. Mok, M.E. Taga, and A.L. Goodman. 2014a. Human gut microbes use multiple transporters to distinguish vitamin B-12 analogs and compete in the gut. Cell Host & Microbe 15 (1): 47–57.  https://doi.org/10.1016/j.chom.2013.12.007.CrossRefGoogle Scholar
  26. Degnan, P.H., M.E. Taga, and A.L. Goodman. 2014b. Vitamin B-12 as a modulator of gut microbial ecology. Cell Metabolism 20 (5): 769–778.  https://doi.org/10.1016/j.cmet.2014.10.002.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Feskanich, D., P. Weber, W.C. Willett, H. Rockett, S.L. Booth, and G.A. Colditz. 1999. Vitamin K intake and hip fractures in women: A prospective study. American Journal of Clinical Nutrition 69 (1): 74–79.CrossRefGoogle Scholar
  28. Frost, G., M.L. Sleeth, M. Sahuri-Arisoylu, B. Lizarbe, S. Cerdan, L. Brody, J. Anastasovska, S. Ghourab, M. Hankir, S. Zhang, D. Carling, J.R. Swann, G. Gibson, A. Viardot, D. Morrison, E.L. Thomas, and J.D. Bell. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nature Communications 5: Artn 3611.  https://doi.org/10.1038/Ncomms4611.
  29. Fukumoto, S., T. Toshimitsu, S. Matsuoka, A. Maruyama, K. Oh-oka, T. Takamura, Y. Nakamura, K. Ishimaru, Y. Fujii-Kuriyama, S. Ikegami, H. Itou, and A. Nakao. 2014. Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis. Immunology and Cell Biology 92 (5): 460–465.  https://doi.org/10.1038/icb.2014.2.CrossRefPubMedGoogle Scholar
  30. Galvez, A., H. Abriouel, R.L. Lopez, and N. Ben Omar. 2007. Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology 120 (1–2): 51–70.  https://doi.org/10.1016/j.ijfoodmicro.2007.06.001.CrossRefPubMedGoogle Scholar
  31. Galvin, M., C. Hill, and R.P. Ross. 1999. Lacticin 3147 displays activity in buffer against gram-positive bacterial pathogens which appear insensitive in standard plate assays. Letters in Applied Microbiology 28 (5): 355–358.  https://doi.org/10.1046/j.1365-2672.1999.00550.x.CrossRefPubMedGoogle Scholar
  32. Gao, Z.G., J. Yin, J. Zhang, R.E. Ward, R.J. Martin, M. Lefevre, W.T. Cefalu, and J.P. Ye. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58 (7): 1509–1517.  https://doi.org/10.2337/db08-1637.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gille, D., and A. Schmid. 2015. Vitamin B12 in meat and dairy products. Nutrition Reviews 73 (2): 106–115.  https://doi.org/10.1093/nutrit/nuu011nuu011 [pii].CrossRefPubMedGoogle Scholar
  34. Girard, C.L., D.E. Santschi, S.P. Stabler, and R.H. Allen. 2009. Apparent ruminal synthesis and intestinal disappearance of vitamin B12 and its analogs in dairy cows. Journal of Dairy Science 92 (9): 4524–4529.  https://doi.org/10.3168/jds.2009-2049 S0022-0302(09)70778-7 [pii].CrossRefPubMedGoogle Scholar
  35. Gorocica-Buenfil, M.A., F.L. Fluharty, C.K. Reynolds, and S.C. Loerch. 2007. Effect of dietary vitamin A restriction on marbling and conjugated linoleic acid content in Holstein steers. Journal of Animal Science 85 (9): 2243–2255.  https://doi.org/10.2527/jas.2006-781.CrossRefPubMedGoogle Scholar
  36. Hamamoto, H., M. Urai, K. Ishii, J. Yasukawa, A. Paudel, M. Murai, T. Kaji, T. Kuranaga, K. Hamase, T. Katsu, J. Su, T. Adachi, R. Uchida, H. Tomoda, M. Yamada, M. Souma, H. Kurihara, M. Inoue, and K. Sekimizu. 2015. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nature Chemical Biology 11 (2): 127–U68.  https://doi.org/10.1038/Nchembio.1710.CrossRefPubMedGoogle Scholar
  37. Hammarstedt, A., P.A. Jansson, C. Wesslau, X. Yang, and U. Smith. 2003. Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochemical and Biophysical Research Communications 301 (2): 578–582.  https://doi.org/10.1016/S0006-291x(03)00014-7.CrossRefPubMedGoogle Scholar
  38. Heng, N.C.K., P.A. Wescombe, J.P. Burton, R.W. Jack, and J.R. Tagg. 2007. The diversity of bacteriocins in Gram-positive bacteria. In Bacteriocins: Ecology and evolution, ed. Riley, M.A., and M.A. Chavan. Berlin: Springer.CrossRefGoogle Scholar
  39. Holland, R., S.Q. Liu, V.L. Crow, M.L. Delabre, M. Lubbers, M. Bennett, and G. Norris. 2005. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. International Dairy Journal 15 (6–9): 711–718.  https://doi.org/10.1016/j.idairyj.2004.09.012.CrossRefGoogle Scholar
  40. Holm, J., S.I. Hansen, and J. Lyngbye. 1980. High-affinity binding of folate to a protein in serum of male subjects. Clinica Chimica Acta 100 (2): 113–119.  https://doi.org/10.1016/0009-8981(80)90072-8 [pii].CrossRefGoogle Scholar
  41. Hsu, S.T.D., E. Breukink, E. Tischenko, M.A.G. Lutters, B. de Kruijff, R. Kaptein, A.M.J.J. Bonvin, and N.A.J. van Nuland. 2004. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nature Structural & Molecular Biology 11 (10): 963–967.  https://doi.org/10.1038/nsmb830.CrossRefGoogle Scholar
  42. Hutkins, R.W., and N.L. Nannen. 1993. Ph homeostasis in lactic-acid bacteria. Journal of Dairy Science 76 (8): 2354–2365.  https://doi.org/10.3168/jds.S0022-0302(93)77573-6.CrossRefGoogle Scholar
  43. Joerger, M.C., and T.R. Klaenhammer. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology 167 (2): 439–446.CrossRefGoogle Scholar
  44. Karl, J.P., X.Y. Fu, X.X. Wang, Y.F. Zhao, J. Shen, C.H. Zhang, B.E. Wolfe, E. Saltzman, L.P. Zhao, and S.L. Booth. 2015. Fecal menaquinone profiles of overweight adults are associated with gut microbiota composition during a gut microbiota-targeted dietary intervention. American Journal of Clinical Nutrition 102 (1): 84–93.  https://doi.org/10.3945/ajcn.115.109496.CrossRefPubMedGoogle Scholar
  45. Khosravi, A., M. Safari, F. Khodaiyan, and S. Gharibzahedi. 2015. Bioconversion enhancement of conjugated linoleic acid by Lactobacillus plantarum using the culture media manipulation and numerical optimization. Journal of Food Science and Technology-Mysore 52 (9): 5781–5789.  https://doi.org/10.1007/s13197-014-1699-6.CrossRefGoogle Scholar
  46. Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, T. Takahashi, S. Miyauchi, G. Shioi, H. Inoue, and G. Tsujimoto. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature Communications 4: Artn 1829.  https://doi.org/10.1038/Ncomms2852.
  47. Kingcha, Y., A. Tosukhowong, T. Zendo, S. Roytrakul, P. Luxananil, K. Chareonpornsook, R. Valyaseyi, K. Sonomoto, and W. Visessanguan. 2012. Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control 25 (1): 190–196.  https://doi.org/10.1016/j.foodcont.2011.10.005.CrossRefGoogle Scholar
  48. Kjer-Nielsen, L., O. Patel, A.J. Corbett, J. Le Nours, B. Meehan, L.G. Liu, M. Bhati, Z.J. Chen, L. Kostenko, R. Reantragoon, N.A. Williamson, A.W. Purcell, N.L. Dudek, M.J. McConville, R.A.J. O’Hair, G.N. Khairallah, D.I. Godfrey, D.P. Fairlie, J. Rossjohn, and J. McCluskey. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491 (7426): 717.  https://doi.org/10.1038/nature11605.CrossRefPubMedGoogle Scholar
  49. Klaenhammer, T.R. 1993. Genetics of bacteriocins produced by lactic-acid bacteria. FEMS Microbiology Reviews 12 (1-3): 39–86.  https://doi.org/10.1016/0168-6445(93)90057-G.CrossRefPubMedGoogle Scholar
  50. Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Backhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6): 1332–1345.  https://doi.org/10.1016/j.cell.2016.05.041.CrossRefPubMedGoogle Scholar
  51. Kovachev, S. 2018. Defence factors of vaginal lactobacilli. Critical Reviews in Microbiology 44 (1): 31–39.  https://doi.org/10.1080/1040841X.2017.1306688.CrossRefPubMedGoogle Scholar
  52. Kritchevsky, D. 2000. Antimutagenic and some other effects of conjugated linoleic acid. British Journal of Nutrition 83 (5): 459–465.PubMedGoogle Scholar
  53. Krockel, L. 2011. Evaluation of a novel agar medium for the detection of hydrogen peroxide producing lactic acid bacteria. Fleischwirtschaft 91 (10): 97–101.Google Scholar
  54. Kuhl, G.C., and J. De Dea Lindner. 2016. Biohydrogenation of linoleic acid by lactic acid bacteria for the production of functional cultured dairy products: A review. Food 5(1). E13 [pii].  https://doi.org/10.3390/foods5010013. foods5010013 [pii].CrossRefGoogle Scholar
  55. Lee, K.S., and D.S. Lee. 1993. A kinetic-model for lactic-acid production in kimchi, a Korean fermented vegetable dish. Journal of Fermentation and Bioengineering 75 (5): 392–394.  https://doi.org/10.1016/0922-338x(93)90142-U.CrossRefGoogle Scholar
  56. Lee, N.K., and H.D. Paik. 2017. Bioconversion using lactic acid bacteria: Ginsenosides, GABA, and phenolic compounds. Journal of Microbiology and Biotechnology 27 (5): 869–877.  https://doi.org/10.4014/jmb.1612.12005.CrossRefPubMedGoogle Scholar
  57. Liu, M., J.R. Bayjanov, B. Renckens, A. Nauta, and R.J. Siezen. 2010. The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC Genomics 11: 36.  https://doi.org/10.1186/1471-2164-11-36 1471-2164-11-36 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lui, O.L., N.K. Mak, and K.N. Leung. 2005. Conjugated linoleic acid induces monocytic differentiation of murine myeloid leukemia cells. International Journal of Oncology 27 (6): 1737–1743.PubMedGoogle Scholar
  59. Mack, M., A.P.G.M. van Loon, and H.P. Hohmann. 1998. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthetase encoded by ribC. Journal of Bacteriology 180 (4): 950–955.PubMedPubMedCentralGoogle Scholar
  60. Martinez, F.A.C., E.M. Balciunas, J.M. Salgado, J.M.D. Gonzalez, A. Converti, and R.P.D. Oliveira. 2013. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology 30 (1): 70–83.  https://doi.org/10.1016/j.tifs.2012.11.007.CrossRefGoogle Scholar
  61. Massey, V. 2000. The chemical and biological versatility of riboflavin. Biochemical Society Transactions 28: 283–296.  https://doi.org/10.1042/0300-5127:0280283.CrossRefPubMedGoogle Scholar
  62. Matu, M.N., G.O. Orinda, E.N.M. Njagi, C.R. Cohen, and E.A. Bukusi. 2010. In vitro inhibitory activity of human vaginal lactobacilli against pathogenic bacteria associated with bacterial vaginosis in Kenyan women. Anaerobe 16 (3): 210–215.  https://doi.org/10.1016/j.anaerobe.2009.11.002.CrossRefPubMedGoogle Scholar
  63. Medina, R.B., M.B. Katz, S. Gonzalez, and G. Oliver. 2004. Determination of esterolytic and lipolytic activities of lactic acid bacteria. Methods in Molecular Biology 268: 465–470. 1-59259-766-1:465 [pii].  https://doi.org/10.1385/1-59259-766-1:465.
  64. Morishita, T., N. Tamura, T. Makino, and S. Kudo. 1999. Production of menaquinones by lactic acid bacteria. Journal of Dairy Science 82 (9): 1897–1903.  https://doi.org/10.3168/jds.S0022-0302(99)75424-X.CrossRefPubMedGoogle Scholar
  65. Nagao, K., N. Inoue, Y.M. Wang, and T. Yanagita. 2003. Conjugated linoleic acid enhances plasma adiponectin level and alleviates hyperinsulinemia and hypertension in Zucker diabetic fatty (fa/fa) rats. Biochemical and Biophysical Research Communications 310 (2): 562–566.  https://doi.org/10.1016/j.bbrc.2003.09.044.CrossRefPubMedGoogle Scholar
  66. O’Shea, M., J. Bassaganya-Riera, and I.C.M. Mohede. 2004. Immunomodulatory properties of conjugated linoleic acid. American Journal of Clinical Nutrition 79 (6): 1199s–1206s.CrossRefGoogle Scholar
  67. Ochoa, J.J., A.J. Farquharson, I. Grant, L.E. Moffat, S.D. Heys, and K.W.J. Wahle. 2004. Conjugated linoleic acids (CLAs) decrease prostate cancer cell proliferation: Different molecular mechanisms for cis-9, trans-11 and trans-10, cis-12 isomers. Carcinogenesis 25 (7): 1185–1191.  https://doi.org/10.1093/carcin/bgh116.CrossRefPubMedGoogle Scholar
  68. Ogunleye, A., A. Bhat, V.U. Irorere, D. Hill, C. Williams, and I. Radecka. 2015. Poly-gamma-glutamic acid: Production, properties and applications. Microbiology-Sgm 161: 1–17.  https://doi.org/10.1099/mic.0.081448-0.CrossRefGoogle Scholar
  69. Okuda, K., T. Zendo, S. Sugimoto, T. Iwase, A. Tajima, S. Yamada, K. Sonomoto, and Y. Mizunoe. 2013. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrobial Agents and Chemotherapy 57 (11): 5572–5579.  https://doi.org/10.1128/Aac.00888-13.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Palombo, J.D., A. Ganguly, B.R. Bistrian, and M.P. Menard. 2002. The antiproliferative effects of biologically active isomers of conjugated linoleic acid on human colorectal and prostatic cancer cells. Cancer Letters 177(2): 163–172. Pii S0304-3835(01)00796-0.  https://doi.org/10.1016/S0304-3835(01)00796-0.CrossRefGoogle Scholar
  71. Parker, P., G. Jones, and S. Smith. 2003. Mixed cultures of food-grade probiotic bacteria and enteric bacteria demonstrate both synergism and inhibition of menaquinone production. Journal of Food Science 68 (7): 2325–2330.  https://doi.org/10.1111/j.1365-2621.2003.tb05767.x.CrossRefGoogle Scholar
  72. Pedersen, M.B., P. Gaudu, D. Lechardeur, M.A. Petit, and A. Gruss. 2012. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annual Review of Food Science and Technology 3 (3): 37–58.  https://doi.org/10.1146/annurev-food-022811-101255.CrossRefPubMedGoogle Scholar
  73. Penailillo, R., A. Guajardo, M. Llanos, S. Hirsch, and A.M. Ronco. 2015. Folic acid supplementation during pregnancy induces sex-specific changes in methylation and expression of placental 11 beta-hydroxysteroid dehydrogenase 2 in rats. PLoS One 10(3). ARTN e0121098.  https://doi.org/10.1371/journal.pone.0121098.CrossRefGoogle Scholar
  74. Rizzello, C.G., A. Cassone, R. Di Cagno, and M. Gobbetti. 2008. Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and gamma-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. Journal of Agricultural and Food Chemistry 56 (16): 6936–6943.  https://doi.org/10.1021/jf800512u.CrossRefPubMedGoogle Scholar
  75. Rossi, M., A. Amaretti, and S. Raimondi. 2011. Folate production by probiotic bacteria. Nutrients 3 (1): 118–134.  https://doi.org/10.3390/nu3010118.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ryder, J.W., C.P. Portocarrero, X.M. Song, L. Cui, M. Yu, T. Combatsiaris, D. Galuska, D.E. Bauman, D.M. Barbano, M.J. Charron, J.R. Zierath, and K.L. Houseknecht. 2001. Isomer-specific antidiabetic properties of conjugated linoleic acid – Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes 50 (5): 1149–1157.  https://doi.org/10.2337/diabetes.50.5.1149.CrossRefPubMedGoogle Scholar
  77. Salas-Salvado, J., F. Marquez-Sandoval, and M. Bullo. 2006. Conjugated linoleic acid intake in humans: A systematic review focusing on its effect on body composition, glucose, and lipid metabolism. Critical Reviews in Food Science and Nutrition 46(6): 479–488. P1P6JW0115286756 [pii].  https://doi.org/10.1080/10408390600723953.CrossRefGoogle Scholar
  78. Sanmartin, M., C. Pazos, and J. Coca. 1992. Reactive extraction of lactic-acid with alamine 336 in the presence of salts and lactose. Journal of Chemical Technology and Biotechnology 54 (1): 1–6.Google Scholar
  79. Schillinger, U., R. Geisen, and W.H. Holzapfel. 1996. Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends in Food Science & Technology 7 (5): 158–164.  https://doi.org/10.1016/0924-2244(96)81256-8.CrossRefGoogle Scholar
  80. Shearer, M.J. 1995. Vitamin-K. Lancet 345 (8944): 229–234.  https://doi.org/10.1016/S0140-6736(95)90227-9.CrossRefPubMedGoogle Scholar
  81. Singhvi, M., D. Joshi, M. Adsul, A. Varma, and D. Gokhale. 2010. D-(−)-lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chemistry 12 (6): 1106–1109.  https://doi.org/10.1039/b925975a.CrossRefGoogle Scholar
  82. Smit, G., B.A. Smit, and W.J. Engels. 2005. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews 29(3): 591–610. S0168-6445(05)00025-2 [pii].  https://doi.org/10.1016/j.femsre.2005.04.002.CrossRefGoogle Scholar
  83. Song, H.J., I. Grant, D. Rotondo, I. Mohede, N. Sattar, S.D. Heys, and K.W.J. Wahle. 2005. Effect of CLA supplementation on immune function in young healthy volunteers. European Journal of Clinical Nutrition 59 (4): 508–517.  https://doi.org/10.1038/sj.ejcn.1602102.CrossRefPubMedGoogle Scholar
  84. Stahmann, K.P., J.L. Revuelta, and H. Seulberger. 2000. Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Applied Microbiology and Biotechnology 53 (5): 509–516.  https://doi.org/10.1007/s002530051649.CrossRefPubMedGoogle Scholar
  85. Steinhart, H., R. Rickert, and K. Winkler. 2003. Identification and analysis of conjugated linoleic acid isomers (CLA). European Journal of Medical Research 8 (8): 370–372.PubMedGoogle Scholar
  86. Tripolt, N.J., B. Leber, D. Blattl, M. Eder, W. Wonisch, H. Scharnagl, T. Stojakovic, B. Obermayer-Pietsch, T.C. Wascher, T.R. Pieber, V. Stadlbauer, and H. Sourij. 2013. Short communication: Effect of supplementation with Lactobacillus casei Shirota on insulin sensitivity, beta-cell function, and markers of endothelial function and inflammation in subjects with metabolic syndrome – A pilot study. Journal of Dairy Science 96 (1): 89–95.  https://doi.org/10.3168/jds.2012-5863.CrossRefPubMedGoogle Scholar
  87. Tsvetanka, T.A., H. Ivelina, P. Atanas, and B. Dora. 2018. Lactic acid bacteria-from nature through food to health. In Advances in biotechnology for food industry. London: Elsevier.Google Scholar
  88. Vaughan, E.E., C. Daly, and G.F. Fitzgerald. 1992. Identification and characterization of Helveticin V-1829, a bacteriocin produced by Lactobacillus-Helveticus 1829. Journal of Applied Bacteriology 73 (4): 299–308.  https://doi.org/10.1111/j.1365-2672.1992.tb04981.x.CrossRefPubMedGoogle Scholar
  89. Walker, A.K. 2016. Germ cells need folate to proliferate. Developmental Cell 38 (1): 8–9.  https://doi.org/10.1016/j.devcel.2016.06.022.CrossRefPubMedGoogle Scholar
  90. Wegkamp, A., W. van Oorschot, W.M. de Vos, and E.J. Smid. 2007. Characterization of the role of para-aminobenzoic acid biosynthesis in folate production by Lactococcus lactis. Applied and Environmental Microbiology 73 (8): 2673–2681.  https://doi.org/10.1128/Aem.02174-06.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wiedemann, I., E. Breukink, C. van Kraaij, O.P. Kuipers, G. Bierbaum, B. de Kruijff, and H.G. Sahl. 2001. Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. Journal of Biological Chemistry 276 (3): 1772–1779.  https://doi.org/10.1074/jbc.M006770200.CrossRefPubMedGoogle Scholar
  92. Wirawan, R.E., K.M. Swanson, T. Kleffmann, R.W. Jack, and J.R. Tagg. 2007. Uberolysin: A novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology-Sgm 153: 1619–1630.  https://doi.org/10.1099/mic.0.2006/005967-0.CrossRefGoogle Scholar
  93. Woraprayote, W., Y. Kingcha, P. Amonphanpokin, J. Kruenate, T. Zendo, K. Sonomoto, S. Benjakul, and W. Visessanguan. 2013. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. International Journal of Food Microbiology 167 (2): 229–235.  https://doi.org/10.1016/j.ijfoodmicro.2013.09.009.CrossRefPubMedGoogle Scholar
  94. Wu, Q.L., and N.P. Shah. 2017. High gamma-aminobutyric acid production from lactic acid bacteria: Emphasis on Lactobacillus brevis as a functional dairy starter. Critical Reviews in Food Science and Nutrition 57 (17): 3661–3672.  https://doi.org/10.1080/10408398.2016.1147418.CrossRefPubMedGoogle Scholar
  95. Yamashita, H., K. Fujisawa, E. Ito, S. Idei, N. Kawaguchi, M. Kimoto, M. Hiemori, and H. Tsuji. 2007. Improvement of obesity and glucose tolerance by acetate in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience Biotechnology and Biochemistry 71 (5): 1236–1243.  https://doi.org/10.1271/bbb.60668.CrossRefGoogle Scholar
  96. Yasui, H., J. Kiyoshima, and T. Hori. 2004. Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei shirota. Clinical and Diagnostic Laboratory Immunology 11 (4): 675–679.  https://doi.org/10.1128/Cdli.11.4.675-679.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yoshimura, M., T. Toyoshi, A. Sano, T. Izumi, T. Fujii, C. Konishi, S. Inai, C. Matsukura, N. Fukuda, H. Ezura, and A. Obata. 2010. Antihypertensive effect of a gamma-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 58 (1): 615–619.  https://doi.org/10.1021/jf903008t.CrossRefPubMedGoogle Scholar
  98. Zhao, D.Y., and N.P. Shah. 2014. Effect of tea extract on lactic acid bacterial growth, their cell surface characteristics and isoflavone bioconversion during soymilk fermentation. Food Research International 62: 877–885.  https://doi.org/10.1016/j.foodres.2014.05.004.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations