Proteins and Exopolysaccharides of Lactic Acid Bacteria

  • Haiqin ChenEmail author
  • Arjan Narbad


Bacteriocin is peptide produced by bacteria to inhibit or kill other bacteria, exopolysaccharides are long chain polysaccharides composed of repeating sugar units. In the past decade, interest in bacteriocin and polysaccharides research from lactic acid bacteria have obtained great momentum due to their potential functions. This chapter will summarize current literature on the biological characteristics and functions of protein and exopolysaccharide produced by lactic acid bacteria, and discuss their potential applications.


Bacteriocin Exopolysaccharide Classification Chemical structure Functionality 


  1. Abbasiliasi, S., et al. 2011. Effect of medium composition and culture condition on the production of bacteriocin-like inhibitory substances (BLIS) by Lactobacillus Paracasei LA07, a strain isolated from Budu. Biotechnology & Biotechnological Equipment 25: 2652–2657.CrossRefGoogle Scholar
  2. Abriouel, H., R. Lucas, N.B. Omar, E. Valdivia, and A. Gálvez. 2010. Potential applications of the cyclic peptide Enterocin AS-48 in the preservation of vegetable foods and beverages. Probiotics Antimicrob Proteins. 2 (2): 77–89.PubMedCrossRefGoogle Scholar
  3. Abriouel, H., C.M. Franz, O.N. Ben, and A. Gálvez. 2011. Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews 35: 201.PubMedCrossRefGoogle Scholar
  4. Ahmad, V., et al. 2017. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. International Journal of Antimicrobial Agents 49: 1–11.PubMedCrossRefGoogle Scholar
  5. Ai, L.Z., et al. 2006. Optimization of culture conditions for exopolysaccharide production by Lactobacillus casei LC2W. Milchwissenschaft-Milk Science International 61: 374–377.Google Scholar
  6. Ai, L., et al. 2008a. Preparation, partial characterization and bioactivity of exopolysaccharides from Lactobacillus casei LC2W. Carbohydrate Polymers 74: 353–357.CrossRefGoogle Scholar
  7. Ai, L.Z., et al. 2008b. Isolation and antihypertensive effect of exopolysaccharides from Lactobacillus casei LC2W. Milchwissenschaft-Milk Science International 63: 3–6.Google Scholar
  8. Alanis, A.J. 2005. Resistance to antibiotics: Are we in the post-antibiotic era? Archives of Medical Research 36: 697.PubMedCrossRefGoogle Scholar
  9. And, H.C., and D.G. Hoover. 2003. Bacteriocins and their food applications. Comprehensive Reviews in Food Science & Food Safety 2: 82–100.CrossRefGoogle Scholar
  10. Arauz, L.J.D., et al. 2012. Culture medium of diluted skimmed milk for the production of nisin in batch cultivations. Annals of Microbiology 62: 419–426.CrossRefGoogle Scholar
  11. Ariga, H., et al. 1992. Extracellular polysaccharide from encapsulated Streptococcus Salivarius subsp thermophilus OR-901 isolated from commercial yogurt. Journal of Food Science 57: 625–628. Scholar
  12. Bouzar, F., J. Cerning, and M. Desmazeaud. 1996. Exopolysaccharide production in milk by Lactobacillus delbrueckii ssp. bulgaricus CNRZ 1187 and by two colonial variants. Journal of Dairy Science 79: 205–211.CrossRefGoogle Scholar
  13. Bowe, W.P., J.C. Filip, J.M. Dirienzo, A. Volgina, and D.J. Margolis. 2006. Inhibition of propionibacterium acnes by bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Journal of Drugs in Dermatology Jdd 5: 868–870.PubMedPubMedCentralGoogle Scholar
  14. Brown, E.D., and G.D. Wright. 2016. Antibacterial drug discovery in the resistance era. Nature 529: 336.PubMedCrossRefGoogle Scholar
  15. Bubb, W.A., T. Urashima, R. Fujiwara, T. Shinnai, and H. Ariga. 1997. Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901. Carbohydrate Research 301: 41–50.PubMedCrossRefGoogle Scholar
  16. Carlet, J., C. Pulcini, and L.J.V. Piddock. 2014. Antibiotic resistance: a geopolitical issue. Clinical Microbiology & Infection the Official Publication of the European Society of Clinical Microbiology & Infectious Diseases 20: 949.CrossRefGoogle Scholar
  17. Casteren, W.H.M.V., C. Dijkema, H.A. Schols, G. Beldman, and A.G.J. Voragen. 1998. Characterisation and modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B40. Carbohydrate Polymers 37: 123–130.CrossRefGoogle Scholar
  18. Cebrián, R., et al. 2014. Analysis of the promoters involved in enterocin AS-48 expression. PLoS One 9: e90603.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cerning, Jutta. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiology Reviews 7: 113–130.PubMedCrossRefGoogle Scholar
  20. Cerning, J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le Lait 75: 463–472.CrossRefGoogle Scholar
  21. Cerning, J., C. Bouillanne, M.J. Desmazeaud, and M. Landon. 1986. Isolation and characterization of exocellular polysaccharide produced by Lactobacillus bulgaricus. Biotechnology Letters 8: 625–628.CrossRefGoogle Scholar
  22. ———. 1988. Exocellular polysaccharide production by Streptococcus thermophilus. Biotechnology Letters 10: 255–260.CrossRefGoogle Scholar
  23. Cerning, J., C. Bouillanne, M. Landon, and M. Desmazeaud. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. Journal of Dairy Science 75: 692–699.CrossRefGoogle Scholar
  24. Cerning, J., et al. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Applied and Environmental Microbiology 60: 3914–3919.PubMedPubMedCentralGoogle Scholar
  25. Chabot, S., et al. 2001. Exopolysaccharides from Lactobacillus rhamnosus RW-9595M stimulate TNF, IL-6 and IL-12 in human and mouse cultured immunocompetent cells, and IFN-gamma mouse splenocytes. Le Lait 81: 683–697.CrossRefGoogle Scholar
  26. Cheikhyoussef, A., N. Pogori, and H. Zhang. 2007. Study of the inhibition effects of Bifidobacterium supernatants towards growth of Bacillus cereus and Escherichia coli. International Journal of Dairy Science 2: 116–125.CrossRefGoogle Scholar
  27. Cheikhyoussef, A., N. Pogori, W. Chen, and H. Zhang. 2008. Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. International Journal of Food Microbiology 125: 215–222.PubMedCrossRefGoogle Scholar
  28. Cheikhyoussef, A., et al. 2009. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Control 20: 553–559.CrossRefGoogle Scholar
  29. ———. 2010. Bifidin I – a new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. Food Control 21: 746–753.CrossRefGoogle Scholar
  30. Chen, H., et al. 2012a. Cloning and heterologous expression of a bacteriocin sakacin P from lactobacillus sakei in Escherichia coli. Applied Microbiology & Biotechnology 94: 1061.CrossRefGoogle Scholar
  31. ———. 2012b. Cloning, expression, and identification of a novel class IIa bacteriocin in the Escherichia coli cell-free protein expression system. Biotechnology Letters 34: 359–364.PubMedCrossRefGoogle Scholar
  32. Cintas, L., et al. 2000. Biochemical and genetic evidence that Enterococcus faecium L50 produces enterocins L50A and L50B, the sec-dependent enterocin P, and a novel bacteriocin secreted without an N-terminal extension termed enterocin Q. Journal of Bacteriology 182: 6806.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Conlan, B.F., A.D. Gillon, D.J. Craik, and M.A. Anderson. 2011. Circular proteins and mechanisms of cyclization. Current Pharmaceutical Design 17: 4318–4328.PubMedCrossRefGoogle Scholar
  34. Cotter, P.D., C. Hill, and R.P. Ross. 2005a. Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology 3: 777–788.PubMedCrossRefGoogle Scholar
  35. ———. 2005b. Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology 3: 777.PubMedCrossRefGoogle Scholar
  36. Craik, D., J. Mylne, and N. Daly. 2010. Cyclotides: Macrocyclic peptides with applications in drug design and agriculture. Cellular & Molecular Life Sciences Cmls 67: 9.CrossRefGoogle Scholar
  37. de Vos, W.M. 1996. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 223–242.PubMedCrossRefPubMedCentralGoogle Scholar
  38. De Vuyst, L., and B. Degeest. 1999a. Expolysaccharides from lactic acid bacteria: Technological bottlenecks and practical solutions. Macromolecular Symposia 140: 31–41. Scholar
  39. ———. 1999b. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews 23: 153–177.PubMedCrossRefPubMedCentralGoogle Scholar
  40. De Vuyst, L., F. Vanderveken, S. Van de Ven, and B. Degeest. 1998. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth-associated biosynthesis. Journal of Applied Microbiology 84: 1059–1068.PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dertli, E., et al. 2013. Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. The Journal of Biological Chemistry 288: 31938–31951. Scholar
  42. Dertli, E., M.J. Mayer, and A. Narbad. 2015. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiology 15: 8. Scholar
  43. Doco, T., et al. 1990. Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydrate Research 198: 313–321.PubMedCrossRefGoogle Scholar
  44. Drider, D., and D. Drider. 2011a. Prokaryotic antimicrobial peptides. New York: Springer.CrossRefGoogle Scholar
  45. ———. 2011b. Prokaryotic antimicrobial peptides. New York: Springer.CrossRefGoogle Scholar
  46. Drider, D., G. Fimland, Y. Héchard, L.M. McMullen, and H. Prévost. 2006. The continuing story of class IIa bacteriocins. Microbiology and molecular biology reviews : MMBR 70: 564.PubMedCrossRefGoogle Scholar
  47. Duboc, P., and B. Mollet. 2001. Applications of exopolysaccharides in the dairy industry. International Dairy Journal 11: 759–768. Scholar
  48. Eijsink, V.G., M. Skeie, P.H. Middelhoven, M.B. Brurberg, and I.F. Nes. 1998. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Applied and Environmental Microbiology 64: 3275–3281.PubMedPubMedCentralGoogle Scholar
  49. Ennahar, S., T. Sashihara, K. Sonomoto, and A. Ishizaki. 2000. Class IIa bacteriocins: Biosynthesis, structure and activity. FEMS Microbiology Reviews 24: 85.PubMedCrossRefGoogle Scholar
  50. Escalante, A., C. Wacher-Rodarte, M. Garcia-Garibay, and A. Farres. 1998. Enzymes involved in carbohydrate metabolism and their role on exopolysaccharide production in Streptococcus thermophilus. Journal of Applied Microbiology 84: 108–114.PubMedCrossRefGoogle Scholar
  51. Espeche, M.C., M.S. Juárez Tomás, B. Wiese, E. Bru, and M.E. Nader-Macías. 2014. Physicochemical factors differentially affect the biomass and bacteriocin production by bovine Enterococcus mundtii CRL1656. Journal of Dairy Science 97: 789–797.PubMedCrossRefGoogle Scholar
  52. Espitia, P.J., et al. 2013. Physical-mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydrate Polymers 94: 199.PubMedCrossRefGoogle Scholar
  53. Faber, E.J., J.P. Kamerling, V. Jfg, and P. Zoon. 1998. The exopolysaccharides produced by Streptococcus thermophilus Rs and Sts have the same repeating unit but differ in viscosity of their milk cultures. Carbohydrate Research 310: 269–276.PubMedCrossRefGoogle Scholar
  54. Forsén, R., and V.M. Häivä. 1981. Induction of stable slime-forming and mucoid states by p -fluorophenylalanine in lactic streptococci. FEMS Microbiology Letters 12: 409–413.CrossRefGoogle Scholar
  55. Forsén, R., E. Heiska, E. Herva, and H. Arvilommi. 1987. Immunobiological effects of Streptococcus cremoris from cultured milk ‘viili’; application of human lymphocyte culture techniques. International Journal of Food Microbiology 5: 41–47.CrossRefGoogle Scholar
  56. Fujita, K., et al. 2007. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of Gram-positive bacteria. Applied & Environmental Microbiology 73: 2871–2877.CrossRefGoogle Scholar
  57. Gamar, L., K. Blondeau, and J.M. Simonet. 1997. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. Journal of Applied Microbiology 83: 281–287.CrossRefGoogle Scholar
  58. Garcia-Garibay, M., and V.M.E. Marshall. 2008. Polymer production by Lactobacillus delbrueckii ssp. bulgaricus. Journal of Applied Microbiology 70: 325–328.Google Scholar
  59. German, B., et al. 1999. The development of functional foods: Lessons from the gut. Trends in Biotechnology 17: 492–499. Scholar
  60. Ghodhbane, H., et al. 2015. Bacteriocins active against multi-resistant gram negative bacteria implicated in nosocomial infections. Infectious Disorders Drug Targets 15: 2–12.PubMedCrossRefGoogle Scholar
  61. Gibson, G.R., and M.B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. The Journal of Nutrition 125: 1401–1412.PubMedGoogle Scholar
  62. Grobben, G.J., J. Sikkema, M.R. Smith, and J.A.M.D. Bont. 1995. Production of extracellular polysaccharides by Lactobacillus delbrueckii ssp. bulgaricus NCFB 2772 grown in a chemically defined medium. Journal of Applied Microbiology 79: 103–107.Google Scholar
  63. Grobben, G.J., M.R. Smith, J. Sikkema, and J.A.M.D. Bont. 1996. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. Applied Microbiology and Biotechnology 46: 279–284.CrossRefGoogle Scholar
  64. Grobben, G.J., et al. 1997. Analysis of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772 grown in continuous culture on glucose and fructose. Applied Microbiology and Biotechnology 48: 516–521.CrossRefGoogle Scholar
  65. Gruter, M., B.R. Leeflang, J. Kuiper, J.P. Kamerling, and J.F. Vliegenthart. 1992. Structure of the exopolysaccharide produced by Lactococcus lactis subspecies cremoris H414 grown in a defined medium or skimmed milk. Carbohydrate Research 231: 273–291.PubMedCrossRefGoogle Scholar
  66. ———. 1993. Structural characterisation of the exopolysaccharide produced by Lactobacillus delbruckii subspecies bulgaricus rr grown in skimmed milk. Carbohydrate Research 239: 209–226.PubMedCrossRefGoogle Scholar
  67. Hammami, R. et al. 2011. Database mining for bacteriocin discoveryGoogle Scholar
  68. Hassan, A.N., J.F. Frank, K.A. Schmidt, and S.I. Shalabi. 1996. Textural properties of yogurt made with encapsulated nonropy lactic cultures. Journal of Dairy Science 79: 2098–2103.CrossRefGoogle Scholar
  69. Hegemann, J.D., M. Zimmermann, X. Xie, and M.A. Marahiel. 2015. Lasso peptides: An intriguing class of bacterial natural products. Accounts of Chemical Research 48: 1909.PubMedCrossRefGoogle Scholar
  70. Heng, N.C.K., and J.R. Tagg. 2006. What’s in a name? Class distinction for bacteriocins. Nature Reviews Microbiology 4: 117e129.CrossRefGoogle Scholar
  71. Hess, S.J., R.F. Roberts, and G.R. Ziegler. 1997. Rheological properties of nonfat yogurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharide or using commercial stabilizer systems. Journal of Dairy Science 80: 252–263.CrossRefGoogle Scholar
  72. Higashimura, M., B.W. Mulder-Bosman, R. Reich, T. Iwasaki, and G.W. Robijn. 2000. Solution properties of viilian, the exopolysaccharide from Lactococcus lactis subsp. cremoris SBT 0495. Biopolymers 54: 143–158.<143::AID-BIP7>3.0.CO;2-Q.CrossRefPubMedGoogle Scholar
  73. Himeno, K., et al. 2012. Identification of enterocin NKR-5-3C, a novel class IIa bacteriocin produced by a multiple bacteriocin producer, Enterococcus faecium NKR-5-3. Journal of the Agricultural Chemical Society of Japan 76: 1245–1247.Google Scholar
  74. Horn, N., et al. 2013. Spontaneous mutation reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics. PLoS One 8: e59957. Scholar
  75. Hosono, A., et al. 1997. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Bioscience, Biotechnology, and Biochemistry 61: 312–316.PubMedCrossRefGoogle Scholar
  76. Howell, T.H., et al. 1993. The effect of a mouthrinse based on nisin, a bacteriocin, on developing plaque and gingivitis in beagle dogs. Journal of Clinical Periodontology 20: 335–339.PubMedCrossRefGoogle Scholar
  77. Iwatani, S., T. Zendo, F. Yoneyama, J. Nakayama, and K. Sonomoto. 2007. Characterization and structure analysis of a novel bacteriocin, lacticin Z, produced by Lactococcus lactis QU 14. Bioscience, Biotechnology, and Biochemistry 71: 1984.PubMedCrossRefGoogle Scholar
  78. Iwatani, S., et al. 2012. Identification of the genes involved in the secretion and self-immunity of lacticin Q, an unmodified leaderless bacteriocin from Lactococcus lactis QU 5. Microbiology 158: 2927.PubMedCrossRefGoogle Scholar
  79. Iwatani, S., Y. Horikiri, T. Zendo, J. Nakayama, and K. Sonomoto. 2013. Bifunctional gene cluster lnqBCDEF mediates bacteriocin production and immunity with differential genetic requirements. Applied & Environmental Microbiology 79: 2446.CrossRefGoogle Scholar
  80. Izquierdo, E., C. Wagner, E. Marchioni, D. Aoudewerner, and S. Ennahar. 2009. Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Applied & Environmental Microbiology 75: 4273.CrossRefGoogle Scholar
  81. Joerger, M.C., and T.R. Klaenhammer. 1986. Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. Journal of Bacteriology 167: 439.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jolly, L., S.J.F. Vincent, P. Duboc, and J.-R. Neeser. 2002. Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82: 367–374. Scholar
  83. Kang, B.S., et al. 2009. Antimicrobial activity of enterocins from Enterococcus faecalis SL-5 against Propionibacterium acnes, the causative agent in acne vulgaris, and its therapeutic effect. Journal of Microbiology 47: 101–109.CrossRefGoogle Scholar
  84. Kaur, B., P.P. Balgir, B. Mittu, B. Kumar, and N. Garg. 2013. Biomedical applications of fermenticin HV6b isolated from Lactobacillus fermentum HV6b MTCC10770. BioMed Research International 2013 (168438): 1.Google Scholar
  85. Kiss, A., et al. 2008. Cloning and characterization of the DNA region responsible for Megacin A-216 production in Bacillus megaterium 216. Journal of Bacteriology 190: 6448.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kitazawa, H., et al. 1991. Antitumoral activity of slime-forming, encapsulated Lactococcus lactis subsp. cremoris isolated from Scandinavian ropy sour milk, “viili”. Nihon Chikusan Gakkaiho 62: 277–283.CrossRefGoogle Scholar
  87. Kitazawa, H., T. Yamaguchi, and T. Itoh. 1992. B-cell mitogenic activity of slime products produced from slime-forming, encapsulated Lactococcus lactis ssp. cremoris. Journal of Dairy Science 75: 2946–2951. Scholar
  88. Kitazawa, H., T. Yamaguchi, M. Miura, T. Saito, and T. Itoh. 1993. B-cell mitogen produced by slime-forming, encapsulated Lactococcus lactis ssp. cremoris isolated from ropy sour milk, viili. Journal of Dairy Science 76: 1514–1519. Scholar
  89. Kitazawa, H., T. Itoh, Y. Tomioka, M. Mizugaki, and T. Yamaguchi. 1996. Induction of IFN-gamma and IL-1 alpha production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. International Journal of Food Microbiology 31: 99–106.PubMedCrossRefGoogle Scholar
  90. Kitazawa, H., et al. 1998. Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. International Journal of Food Microbiology 40: 169–175. Scholar
  91. Klaenhammer, T.R. 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews 12: 39–85.PubMedCrossRefGoogle Scholar
  92. Kojic, M., et al. 1992. Analysis of exopolysaccharide production by Lactobacillus casei CG11, isolated from cheese. Applied and Environmental Microbiology 58: 4086–4088.PubMedPubMedCentralGoogle Scholar
  93. Lai, C.Y., S. Tran, and R.S. Simmonds. 2002. Functional characterization of domains found within a lytic enzyme produced by Streptococcus equi subsp. zooepidemicus. FEMS Microbiology Letters 215: 133–138.PubMedCrossRefGoogle Scholar
  94. Laws, A., Y. Gu, and V. Marshall. 2001. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnology Advances 19: 597–625. Scholar
  95. Lemoine, J., et al. 1997. Structural characterization of the exocellular polysaccharides produced by Streptococcus thermophilus SFi39 and SFi12. Applied and Environmental Microbiology 63: 3512–3518.PubMedPubMedCentralGoogle Scholar
  96. Liong, M.T. 2015. Beneficial microorganisms in medical and health applications. Cham: Springer.CrossRefGoogle Scholar
  97. Looijesteijn, P.J., W.H. van Casteren, R. Tuinier, C.H. Doeswijk-Voragen, and J. Hugenholtz. 2000. Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in continuous cultures. Journal of Applied Microbiology 89: 116–122.PubMedCrossRefGoogle Scholar
  98. Macura, D., and P.M. Townsley. 1984. Scandinavian ropy milk — Identification and characterization of endogenous ropy Lactic Streptococci and their extracellular excretion 1. Journal of Dairy Science 67: 735–744.CrossRefGoogle Scholar
  99. Maisnier-Patin, S., N. Deschamps, S.R. Tatini, and J. Richard. 1992. Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Dairy Science & Technology 72: 249–263.CrossRefGoogle Scholar
  100. Mandal, V., S.K. Sen, and N.C. Mandal. 2011. Isolation and characterization of Pediocin NV 5 producing Pediococcus acidilactici LAB 5 from vacuum-packed fermented meat product. Indian Journal of Microbiology 51: 22–29.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Manosroi, A., et al. 2010. Transdermal absorption enhancement through rat skin of gallidermin loaded in niosomes. International Journal of Pharmaceutics 392: 304–310.PubMedCrossRefGoogle Scholar
  102. Maqueda, M., et al. 2008. Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiology Reviews 32: 2–22.PubMedCrossRefGoogle Scholar
  103. Marle, M.E.V., and P. Zoon. 1995. Permeability and rheological properties of microbially and chemically acidified skim-milk gels. Netherlands Milk & Dairy Journal 49: 47–65.Google Scholar
  104. Marle, M.E.V., D.V.D. Ende, C.G.D. Kruif, and J. Mellema. 1999. Steady-shear viscosity of stirred yogurts with varying ropiness. Journal of Rheology 43: 1643–1662.CrossRefGoogle Scholar
  105. Marshall, V.M., and E.N. Cowie. 1995. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. Journal of Dairy Research 62: 621–628.CrossRefGoogle Scholar
  106. Marshall, V.M., and H.L. Rawson. 1999. Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. International Journal of Food Science & Technology 34: 137–143.CrossRefGoogle Scholar
  107. Masuda, Y., et al. 2011. Identification and characterization of leucocyclicin Q, a novel cyclic bacteriocin produced by Leuconostoc mesenteroides TK41401. Applied & Environmental Microbiology 77: 8164.CrossRefGoogle Scholar
  108. Masuda, Y., T. Zendo, and K. Sonomoto. 2012. New type non-lantibiotic bacteriocins: Circular and leaderless bacteriocins. Beneficial Microbes 3: 3–12.PubMedCrossRefGoogle Scholar
  109. Michalet, S., et al. 2007. N-caffeoylphenalkylamide derivatives as bacterial efflux pump inhibitors. Bioorganic & Medicinal Chemistry Letters 17: 1755.CrossRefGoogle Scholar
  110. Montalbánlópez, M., L. Zhou, A. Buivydas, A.J. van Heel, and O.P. Kuipers. 2012. Increasing the success rate of lantibiotic drug discovery by Synthetic Biology. Expert Opinion on Drug Discovery 7: 695.CrossRefGoogle Scholar
  111. Mozzi, F., G.G. de Savoy, and G. Oliver. 1996. Exopolysaccharide production by Lactobacillus casei in milk under different growth conditions. Milchwissenschaft-Milk Science International 51: 670–673.Google Scholar
  112. Mu, F., et al. 2014. Biological function of a DUF95 superfamily protein involved in the biosynthesis of a circular bacteriocin, leucocyclicin Q. Journal of Bioscience and Bioengineering 117: 158.PubMedCrossRefGoogle Scholar
  113. Nagaoka, M., S. Hashimoto, T. Watanabe, T. Yokokura, and Y. Mori. 1994. Anti-ulcer effects of lactic acid bacteria and their cell wall polysaccharides. Biological & Pharmaceutical Bulletin 17: 1012–1017.CrossRefGoogle Scholar
  114. Nakajima, H., et al. 1990. A novel phosphopolysaccharide from slime-forming Lactococcus lactis subspecies cremoris SBT 0495. Journal of Dairy Science 73: 1472–1477.CrossRefGoogle Scholar
  115. Nakajima, H., Y. Suzuki, and T. Hirota. 1992a. Cholesterol lowering activity of ropy fermented milk. Journal of Food Science 57: 1327–1329. Scholar
  116. Nakajima, H., T. Hirota, T. Toba, T. Itoh, and S. Adachi. 1992b. Structure of the extracellular polysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydrate Research 224: 245–253.PubMedCrossRefGoogle Scholar
  117. Nakajima, H., T. Toba, and S. Toyoda. 1995. Enhancement of antigen-specific antibody production by extracellular slime products from slime-forming Lactococcus lactis subspecies cremoris SBT 0495 in mice. International Journal of Food Microbiology 25: 153–158.PubMedCrossRefGoogle Scholar
  118. Naoki, I., et al. 2012. Purification and characterization of multiple bacteriocins and an inducing peptide produced by Enterococcus faecium NKR-5-3 from Thai fermented fish. Journal of the Agricultural Chemical Society of Japan 76: 947–953.Google Scholar
  119. Nes, I.F., et al. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek 70: 113.PubMedCrossRefGoogle Scholar
  120. Nilsen, T., I.F. Nes, and H. Holo. 2003. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Applied & Environmental Microbiology 69: 2975–2984.CrossRefGoogle Scholar
  121. Nilsson, B., and G. Nilsson. 1958. Studies concerning Swedish ropy milk. Archives of Microbiology 31: 191–197.Google Scholar
  122. Nissenmeyer, J., C. Oppegård, P. Rogne, H.S. Haugen, and P.E. Kristiansen. 2010. Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics & Antimicrobial Proteins 2: 52.CrossRefGoogle Scholar
  123. Nissen-Meyer, J., H. Holo, L.S. Håvarstein, K. Sletten, and I.F. Nes. 1992. A novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides. Journal of Bacteriology 174: 5686–5692.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Norris, R.F., M. De Sipin, F.W. Zilliken, T.S. Harvey, and P. Gyorgy. 1954. Occurrence of mucoid variants of Lactobacillus bifidus; demonstration of extracellular and intracellular polysaccharide. Journal of Bacteriology 67: 159–166.PubMedPubMedCentralGoogle Scholar
  125. O’ Shea, E.F., P.D. Cotter, R.P. Ross, and C. Hill. 2013. Strategies to improve the bacteriocin protection provided by lactic acid bacteria. Current Opinion in Biotechnology 24: 130–134.PubMedCrossRefGoogle Scholar
  126. O’Rourke, A.L.D., R.S. Simmonds, A.S. Gargis, and G.L. Sloan. 2009. Prevalence and acquisition of the genes for zoocin A and zoocin A resistance in Streptococcus equi subsp. zooepidemicus. Journal of Molecular Evolution 68: 498–505.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Oba, T., et al. 1999. Viscoelastic properties of aqueous solutions of the phosphopolysaccharide “viilian” from Lactococcus lactis subsp. cremoris SBT 0495. Carbohydrate Polymers 39: 275–281.CrossRefGoogle Scholar
  128. Oda, M., H. Hasegawa, S. Komatsu, M. Kambe, and F. Tsuchiya. 1983. Anti-tumor polysaccharide from Lactobacillus sp. Agricultural & Biological Chemistry 47: 1623–1625.CrossRefGoogle Scholar
  129. Oppegård, C., et al. 2007. The two-peptide class II bacteriocins: Structure, production, and mode of action. Journal of Molecular Microbiology & Biotechnology 13: 210–219.CrossRefGoogle Scholar
  130. Ovchinnikov, K.V., et al. 2014. Defining the structure and receptor binding domain of the leaderless bacteriocin LsbB. Journal of Biological Chemistry 289: 23838.PubMedCrossRefGoogle Scholar
  131. Papagianni, M. 2003. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnology Advances 21: 465–499.PubMedCrossRefGoogle Scholar
  132. Patricia, A.S., M.L. Manuel, D. Mu, and O.P. Kuipers. 2016. Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology & Biotechnology 100: 2939–2951.CrossRefGoogle Scholar
  133. Perez, R.H., T. Zendo, and K. Sonomoto. 2014. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories 13: 1–13.CrossRefGoogle Scholar
  134. Piper, C., L.A. Draper, P.D. Cotter, R.P. Ross, and C. Hill. 2009. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. Journal of Antimicrobial Chemotherapy 64: 546–551.PubMedCrossRefGoogle Scholar
  135. Rawson, H.L., and V.M. Marshall. 2003. Effect of ‘ropy’ strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus on rheology of stirred yogurt. International Journal of Food Science & Technology 32: 213–220.CrossRefGoogle Scholar
  136. Rea, M.C., et al. 2007. Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. Journal of Medical Microbiology 56: 940–946.PubMedCrossRefGoogle Scholar
  137. Richard, C., et al. 2006. Evidence on correlation between number of disulfide bridge and toxicity of class IIa bacteriocins. Food Microbiology 23: 175.PubMedCrossRefGoogle Scholar
  138. Riley, M.A., and J.E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annual Review of Microbiology 56: 117.PubMedCrossRefGoogle Scholar
  139. Robijn, G.W., D.J. van den Berg, H. Haas, J.P. Kamerling, and J.F. Vliegenthart. 1995a. Determination of the structure of the exopolysaccharide produced by Lactobacillus sake 0-1. Carbohydrate Research 276: 117–136.PubMedCrossRefGoogle Scholar
  140. Robijn, G.W., et al. 1995b. The structure of the exopolysaccharide produced by Lactobacillus helveticus 766. Carbohydrate Research 276: 137–154.PubMedCrossRefGoogle Scholar
  141. ———. 1996a. Structural studies of the exopolysaccharide produced by Lactobacillus paracasei 34-1. Carbohydrate Research 285: 129–139.PubMedCrossRefGoogle Scholar
  142. ———. 1996b. Structural characterization of the exopolysaccharide produced by Lactobacillus acidophilus LMG9433. Carbohydrate Research 288: 203–218.PubMedCrossRefGoogle Scholar
  143. Ruijssenaars, H.J., F. Stingele, and S. Hartmans. 2000. Biodegradability of food-associated extracellular polysaccharides. Current Microbiology 40: 194–199.PubMedCrossRefGoogle Scholar
  144. Rutledge, P.J., and G.L. Challis. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology 13: 509–523.PubMedCrossRefGoogle Scholar
  145. Sabo, S.D.S., M. Vitolo, and J.M.D. González. 2014. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International 64: 527–536.CrossRefGoogle Scholar
  146. Salminen, S., et al. 1998. Functional food science and gastrointestinal physiology and function. The British Journal of Nutrition 80 (Suppl 1): S147–S171.PubMedCrossRefGoogle Scholar
  147. Sánchezhidalgo, M., et al. 2011a. AS-48 bacteriocin: Close to perfection. Cellular & Molecular Life Sciences Cmls 68: 2845–2857.CrossRefGoogle Scholar
  148. ———. 2011b. AS-48 bacteriocin: Close to perfection. Cellular & Molecular Life Sciences 68: 2845–2857.CrossRefGoogle Scholar
  149. Sawa, N., et al. 2009. Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Applied & Environmental Microbiology 75: 1552–1558.CrossRefGoogle Scholar
  150. Sebastiani, H., and G. Zelger. 1998. Texture formation by thermophilic lactic acid bacteria. Milchwissenschaft-Milk Science International 53: 15–20.Google Scholar
  151. Shao, L., et al. 2014. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydrate Polymers 107: 51.PubMedCrossRefGoogle Scholar
  152. Shelburne, C.E., et al. 2007. The spectrum of antimicrobial activity of the bacteriocin subtilosin. Journal of Antimicrobial Chemotherapy 59: 297.PubMedCrossRefGoogle Scholar
  153. Siegers, K., and K.D. Entian. 1995. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Applied & Environmental Microbiology 61: 1082.Google Scholar
  154. Sjöberg, A., and B. Hahnhägerdal. 1989. β-glucose-1-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lactis. Applied & Environmental Microbiology 55: 1549.Google Scholar
  155. Skriver, A., W. Buchheim, and K.B. Qvist. 1995. Electron microscopy of stirred yoghurt: Ability of three techniques to visualize exo-polysaccharides from ropy strains. Milchwissenschaft-Milk Science International 50: 683–686.Google Scholar
  156. Stingele, F., J.R. Neeser, and B. Mollet. 1996. Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. Journal of Bacteriology 178: 1680–1690.PubMedPubMedCentralCrossRefGoogle Scholar
  157. Stingele, F., et al. 1999. Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363: Production and characterization of an altered polysaccharide. Molecular Microbiology 32: 1287–1295.PubMedCrossRefGoogle Scholar
  158. Suda, S., P.D. Cotter, C. Hill, and R.P. Ross. 2012. Lacticin 3147--biosynthesis, molecular analysis, immunity, bioengineering and applications. Current Protein & Peptide Science 13: 193.CrossRefGoogle Scholar
  159. Sundman, V., et al. 1953. On the protein character of a slime produced by Streptococcus cremoris in finnish ropy sour milk. Acta Chemica Scandinavica 7: 558–560.CrossRefGoogle Scholar
  160. Sutherland, I.W. 1972. Bacterial exopolysaccharides. Advances in Microbial Physiology 8: 143–213.PubMedCrossRefGoogle Scholar
  161. ———. 1982. Biosynthesis of microbial exopolysaccharides. Advances in Microbial Physiology 23: 79–150.PubMedCrossRefPubMedCentralGoogle Scholar
  162. ———. 1985. Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annual Review of Microbiology 39: 243–270.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Sutherland, I. 1990. Biotechnology of microbial exopolysaccharides. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  164. Tagg, J.R. 2004. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian Journal of Medical Research 119 (Suppl): 13–16.PubMedGoogle Scholar
  165. Tagg, J.R., A.S. Dajani, and L.W. Wannamaker. 1976. Bacteriocins of gram-positive bacteria. Bacteriological Reviews 40: 722.PubMedPubMedCentralGoogle Scholar
  166. Toba, T., et al. 1991. A new fermented milk using capsular polysaccharide-producing Lactobacillus kefiranofaciens isolated from kefir grains. Journal of Dairy Research 58: 497–502.CrossRefGoogle Scholar
  167. Tomita, H., S. Fujimoto, K. Tanimoto, and Y. Ike. 1996. Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. Journal of Bacteriology 178: 3585.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Towle, K.M., and J.C. Vederas. 2017. Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. Medchemcomm 8: 276–285.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Tuinier, R. 1999. An exocellular polysaccharide and its interactions with proteins. Landbouwuniversiteit Wageningen Promotoren Dr.Google Scholar
  170. Tuinier, R., P. Zoon, M.A. Stuart, G.J. Fleer, and C.G. de Kruif. 1999a. Concentration and shear-rate dependence of the viscosity of an exocellular polysaccharide. Biopolymers 50: 641–646.<641::AID-BIP8>3.0.CO;2-D.CrossRefPubMedGoogle Scholar
  171. Tuinier, R., E. ten Grotenhuis, C. Holt, P.A. Timmins, and C.G. de Kruif. 1999b. Depletion interaction of casein micelles and an exocellular polysaccharide. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics 60: 848–856.PubMedGoogle Scholar
  172. Tuinier, R., et al. 2015. Effects of structural modifications on some physical characteristics of exopolysaccharides from Lactococcus lactis. Biopolymers 59: 160–166.CrossRefGoogle Scholar
  173. van Belkum, M.J., and M.E. Stiles. 2000. Nonlantibiotic antibacterial peptides from lactic acid bacteria. Natural Product Reports 17 (4): 323–335.PubMedCrossRefGoogle Scholar
  174. van Belkum, Marco J., Leah A. Martin-Visscher, and John C. Vederas. 2011. Structure and genetics of circular bacteriocins. Trends in Microbiology 19: 411–418.PubMedCrossRefGoogle Scholar
  175. Van den Berg, D., et al. 1995. Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Applied & Environmental Microbiology 61: 2840–2844.Google Scholar
  176. Van Heel, A.J., M. Montalban-Lopez, and O.P. Kuipers. 2011. Evaluating the feasibility of lantibiotics as an alternative therapy against bacterial infections in humans. Expert Opinion on Drug Metabolism & Toxicology 7: 675.CrossRefGoogle Scholar
  177. van Kranenburg, R., H.R. Vos, I.I. van Swam, M. Kleerebezem, and W.M. de Vos. 1999. Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: Complementation, expression, and diversity. Journal of Bacteriology 181: 6347–6353.PubMedPubMedCentralGoogle Scholar
  178. Vandenberg, D.J.C., et al. 1995. Production of a novel extracellular polysaccharide by lactobacillus-sake 0-1 and characterization of the polysaccharide. Applied and Environmental Microbiology 61: 2840–2844.Google Scholar
  179. Vaughan, E.E., C. Daly, and G.F. Fitzgerald. 1992. Identification and characterization of helveticin V-1829, a bacteriocin produced by Lactobacillus helveticus 1829. Journal of Applied Bacteriology 73: 299–308.PubMedCrossRefGoogle Scholar
  180. Wacher-Rodarte, C., et al. 1993. Yogurt production from reconstituted skim milk using different polymer and non-polymer forming starter cultures. Journal of Dairy Research 60: 247–254.CrossRefGoogle Scholar
  181. Wang, M., E. Steers, and R.F. Norris. 1963. Extracellular polysaccharide of mucoid Lactobacillus Bifidus. Journal of Bacteriology 86: 898–903.PubMedPubMedCentralGoogle Scholar
  182. Wu, S., et al. 2005. Purification and characterization of two novel antimicrobial peptides subpeptin JM4-A and subpeptin JM4-B produced by Bacillus subtilis JM4. Current Microbiology 51: 292.PubMedCrossRefGoogle Scholar
  183. Yamamoto, Y., S. Murosaki, R. Yamauchi, K. Kato, and Y. Sone. 1994. Structural study on an exocellular polysaccharide produced by lactobacillus helveticus TY1-2. Carbohydrate Research 261: 67–78.PubMedCrossRefGoogle Scholar
  184. Yamamoto, Y., T. Nunome, R. Yamauchi, K. Kato, and Y. Sone. 1995. Structure of an exocellular polysaccharide of Lactobacillus helveticus TN-4, a spontaneous mutant strain of Lactobacillus helveticus TY1-2. Carbohydrate Research 275: 319–332.PubMedCrossRefGoogle Scholar
  185. Yan, S., et al. 2017. Production of exopolysaccharide by Bifidobacterium longum isolated from elderly and infant feces and analysis of priming glycosyltransferase genes. RSC Advances 7: 31736–31744. Scholar
  186. Yang, Z., M. Staaf, E. Huttunen, and G. Widmalm. 2000. Structure of a viscous exopolysaccharide produced by Lactobacillus helveticus K16. Carbohydrate Research 329: 465–469.PubMedCrossRefGoogle Scholar
  187. Yoneyama, F., et al. 2009a. Peptide-lipid huge toroidal pore, a new antimicrobial mechanism mediated by a lactococcal bacteriocin, lacticin Q. Antimicrobial Agents and Chemotherapy 53: 3211–3217.PubMedPubMedCentralCrossRefGoogle Scholar
  188. ———. 2009b. Lacticin Q, a lactococcal bacteriocin, causes high-level membrane permeability in the absence of specific receptors. Applied and Environmental Microbiology 75: 538–541.PubMedCrossRefGoogle Scholar
  189. ———. 2011. Lacticin Q-mediated selective toxicity depending on physicochemical features of membrane components. Antimicrobial Agents & Chemotherapy 55: 2446–2450.CrossRefGoogle Scholar
  190. Zendo, T., et al. 2006. Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Applied & Environmental Microbiology 72: 3383–3389.CrossRefGoogle Scholar
  191. Zubillaga, M., et al. 2001. Effect of probiotics and functional foods and their use in different diseases. Nutrition Research 21: 569–579.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Quadram Institute BioscienceNorwichUK

Personalised recommendations