Advertisement

Lactic Acid Bacteria and Biotoxins

  • Arjan NarbadEmail author
  • Xin Tang
Chapter

Abstract

Biological toxins are toxic chemicals from biological sources and have toxic effects or cause diseases and death. In order to reduce the biotoxins in food, many methods have been tried. The physical methods mainly include physical adsorption, strengthening the cleaning of raw materials, and clarification. The chemical methods mainly include additives or chemical fungicides to reduce the amount of biotoxins. However, these traditional strategies have many limitations, such as the change of flavor, the destruction of nutrition, and the influence of food functional properties. Lactic acid bacteria (LAB) have lots of potential applications as one of the biological antagonists. This kind of microorganisms has been extensively used in the fermented foods and the commensal microflora in the gut. LAB can generate some antagonistic compounds to inhibit the growth of pathogenic bacteria and restrain the undesirable spoilage microflora and then to reduce the biotoxins.

Keywords

LAB Biotoxins Adsorption Degradation 

References

  1. Achuthan, Anju A., Raj Kumar Duary, Anupama Madathil, Harsh Panwar, Himanshu Kumar, Virender Kumar Batish, and Sunita Grover. 2012. Antioxidative potential of lactobacilli isolated from the gut of Indian people. Molecular Biology Reports 39 (8): 7887–7897.  https://doi.org/10.1007/s11033-012-1633-9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adebo, O.A., P.B. Njobeh, S. Gbashi, O.C. Nwinyi, and V. Mavumengwana. 2017. Review on microbial degradation of aflatoxins. Critical Reviews in Food Science and Nutrition 57 (15): 3208–3217.PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahlberg, Sara H., Vesa Joutsjoki, and Hannu J. Korhonen. 2015. Potential of lactic acid bacteria in aflatoxin risk mitigation. International journal of food microbiology 207: 87–102.PubMedCrossRefGoogle Scholar
  4. Alberts, J.F., W.C.A. Gelderblom, A. Botha, and W.H. Van Zyl. 2009. Degradation of aflatoxin B 1 by fungal laccase enzymes. International journal of food microbiology 135 (1): 47–52.PubMedCrossRefGoogle Scholar
  5. Anene, Amira, Rafik Kalfat, Yves Chevalier, and Souhaira Hbaieb. 2016. Molecularly imprinted polymer-based materials as thin films on silica supports for efficient adsorption of Patulin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 497: 293–303.  https://doi.org/10.1016/j.colsurfa.2016.03.005.CrossRefGoogle Scholar
  6. Assuncao, R., P. Alvito, C.R. Kleiveland, and T.E. Lea. 2016. Characterization of in vitro effects of patulin on intestinal epithelial and immune cells. Toxicology Letters 250–251: 47–56.  https://doi.org/10.1016/j.toxlet.2016.04.007.CrossRefPubMedGoogle Scholar
  7. Avsaroglu, M.D., F. Bozoglu, Hami Alpas, Alain Largeteau, and Gérard Demazeau. 2015. Use of pulsed-high hydrostatic pressure treatment to decrease patulin in apple juice. High Pressure Research 35 (2): 214–222.CrossRefGoogle Scholar
  8. Azevedo, Smfo, W.W. Carmichael, E.M. Jochimsen, K.L. Rinehart, S. Lau, G.R. Shaw, and G.K. Eaglesham. 2002. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181: 441–446.  https://doi.org/10.1016/s0300-483x(02)00491-2.CrossRefPubMedGoogle Scholar
  9. Aziz, N.H., and L.A.A. Moussa. 2004. Reduction of fungi and mycotoxins formation in seeds by gamma-radiation. Journal of Food Safety 24 (2): 109–127.CrossRefGoogle Scholar
  10. Aziz, Nagy H., and B. Smyk. 2002. Influence of UV radiation and nitrosamines on the induction of mycotoxins synthesis by nontoxigenic moulds isolated from feed samples. Food/Nahrung 46 (2): 118–121.PubMedCrossRefGoogle Scholar
  11. Barad, Shiri, Edward Sionov, and Dov Prusky. 2016. Role of patulin in post-harvest diseases. Fungal Biology Reviews 30 (1): 24–32.  https://doi.org/10.1016/j.fbr.2016.02.001.CrossRefGoogle Scholar
  12. Barros, G.G., A.M. Torres, M.I. Rodriguez, and S.N. Chulze. 2006. Genetic diversity within Aspergillus flavus strains isolated from peanut-cropped soils in Argentina. Soil Biology and Biochemistry 38 (1): 145–152.CrossRefGoogle Scholar
  13. Belkacem-Hanfi, Nesrine, Imene Fhoula, Nabil Semmar, Amel Guesmi, Isabelle Perraud-Gaime, Hadda-Imen Ouzari, Abdellatif Boudabous, and Sevastianos Roussos. 2014. Lactic acid bacteria against post-harvest moulds and ochratoxin A isolated from stored wheat. Biological Control 76: 52–59.  https://doi.org/10.1016/j.biocontrol.2014.05.001.CrossRefGoogle Scholar
  14. Bellver Soto, J., M. Fernandez-Franzon, M.J. Ruiz, and A. Juan-Garcia. 2014. Presence of ochratoxin A (OTA) mycotoxin in alcoholic drinks from southern European countries: Wine and beer. Journal of Agricultural and Food Chemistry 62 (31): 7643–7651.  https://doi.org/10.1021/jf501737h.CrossRefPubMedGoogle Scholar
  15. Blagojev, Nevena, Marija Škrinjar, Slavica Vesković-Moračanin, and Vladislava Šošo. 2012. Control of mould growth and mycotoxin production by lactic acid bacteria metabolites. Romanian Biotechnological Letters 17 (3): 7219–7226.Google Scholar
  16. Böhm, J., J. Grajewski, H. Asperger, et al. 2000. Study on biodegradation of some A-and B-trichothecenes and ochratoxin A by use of probiotic microorganisms. Mycotoxin Research 16: 70–74.PubMedCrossRefGoogle Scholar
  17. Botha, N., M. van de Venter, T.G. Downing, E.G. Shephard, and M.M. Gehringer. 2004. The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon 43 (3): 251–254.  https://doi.org/10.1016/j.toxicon.2003.11.026.CrossRefPubMedGoogle Scholar
  18. Boudra, Hamid, Pierrette Le Bars, and Joseph Le Bars. 1995. Thermostability of Ochratoxin A in wheat under two moisture conditions. Applied and Environmental Microbiology 61 (3): 1156–1158.PubMedPubMedCentralGoogle Scholar
  19. Boussabbeh, M., I. Ben Salem, F. Belguesmi, H. Bacha, and S. Abid-Essefi. 2016. Tissue oxidative stress induced by patulin and protective effect of crocin. Neurotoxicology 53: 343–349.  https://doi.org/10.1016/j.neuro.2015.11.005.CrossRefPubMedGoogle Scholar
  20. Bovo, Fernanda, Larissa Tuanny Franco, Roice Eliana Rosim, and Carlos Augusto Fernandes de Oliveira. 2014. Ability of a Lactobacillus rhamnosus strain cultured in milk whey based medium to bind aflatoxin B1. Food Science and Technology (Campinas) 34 (3): 566–570.CrossRefGoogle Scholar
  21. Bren, Urban, F. Peter Guengerich, and Janez Mavri. 2007. Guanine alkylation by the potent carcinogen aflatoxin B1: Quantum chemical calculations. Chemical Research in Toxicology 20 (8): 1134–1140.PubMedCrossRefGoogle Scholar
  22. Broberg, Anders, Karin Jacobsson, Katrin Ström, and Johan Schnürer. 2007. Metabolite profiles of lactic acid bacteria in grass silage. Applied and Environmental Microbiology 73 (17): 5547–5552.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Castoria, R., Mannina, L., Duran-Patron, R., and Maffei, F. 2011. Conversion of the mycotoxin patulin to the less toxic desoxypatulinic acid by the biocontrol yeast Rhodosporidium kratochvilovae strain LS11. Journal of Agricultural and Food Chemistry 59(21):11571–11578.  https://doi.org/10.1016/j.molcatb.2007.07.001. 10.1021/jf203098v.CrossRefGoogle Scholar
  24. Dalié, D.K.D., A.M. Deschamps, and F. Richard-Forget. 2010. Lactic acid bacteria – Potential for control of mould growth and mycotoxins: A review. Food Control 21 (4): 370–380.  https://doi.org/10.1016/j.foodcont.2009.07.011.CrossRefGoogle Scholar
  25. Das, Arijit, Sourav Bhattacharya, Muthusamy Palaniswamy, and Jayaraman Angayarkanni. 2014. Biodegradation of aflatoxin B1 in contaminated rice straw by Pleurotus ostreatus MTCC 142 and Pleurotus ostreatus GHBBF10 in the presence of metal salts and surfactants. World Journal of Microbiology and Biotechnology 30 (8): 2315–2324.PubMedCrossRefGoogle Scholar
  26. Dawson, R.M. 1998. The toxicology of microcystins. Toxicon 36 (7): 953–962.  https://doi.org/10.1016/S0041-0101(97)00102-5.CrossRefPubMedGoogle Scholar
  27. de Melo, F.T., I.M. de Oliveira, S. Greggio, J.C. Dacosta, T.N. Guecheva, J. Saffi, J.A. Henriques, and R.M. Rosa. 2012. DNA damage in organs of mice treated acutely with patulin, a known mycotoxin. Food and Chemical Toxicology 50 (10): 3548–3555.  https://doi.org/10.1016/j.fct.2011.12.022.CrossRefPubMedGoogle Scholar
  28. Del Prete, V., H. Rodriguez, A.V. Carrascosa, B. de las Rivas, E. Garcia-Moruno, and R. Munoz. 2007. In vitro removal of ochratoxin A by wine lactic acid bacteria. Journal of Food Protection 70 (9): 2155–2160.PubMedCrossRefGoogle Scholar
  29. Delcour, Jean, Thierry Ferain, Marie Deghorain, Emmanuelle Palumbo, and Pascal Hols. 1999. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. In Lactic acid bacteria: Genetics, metabolism and applications, 159–184. Dordrecht: Springer.CrossRefGoogle Scholar
  30. Ding, W.X., and C.N. Ong. 2003. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. Fems Microbiology Letters 220 (1): 1–7.  https://doi.org/10.1016/S0378-1097(03)00100-9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dong, X., W. Jiang, C. Li, N. Ma, Y. Xu, and X. Meng. 2015. Patulin biodegradation by marine yeast Kodameae ohmeri. Food Additives & Contaminants: Part A Chemistry, Analysis, Control, Exposure & Risk Assessment 32 (3): 352–360.  https://doi.org/10.1080/19440049.2015.1007090.CrossRefGoogle Scholar
  32. Duarte, S.C., C.M. Lino, and A. Pena. 2012. Food safety implications of ochratoxin A in animal-derived food products. The Veterinary Journal 192 (3): 286–292.  https://doi.org/10.1016/j.tvjl.2011.11.002.CrossRefPubMedPubMedCentralGoogle Scholar
  33. El-Nezami, Hani, Pasi Kankaanpää, Seppo Salminen, and Jorma Ahokas. 1998. Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. Journal of Food Protection® 61 (4): 466–468.CrossRefGoogle Scholar
  34. El-Nezami, Hani, Hannu Mykkänen, Pasi Kankaanpää, Seppo Salminen, and Jorma Ahokas. 2000. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum. Journal of Food Protection® 63 (4): 549–552.CrossRefGoogle Scholar
  35. El-Nezami, H., N. Polychronaki, S. Salminen, and H. Mykkanen. 2002. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and Its derivative-zearalenol. Applied and Environmental Microbiology 68 (7): 3545–3549.  https://doi.org/10.1128/aem.68.7.3545-3549.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  36. El-Nezami, H., N. Polychronaki, Y.K. Lee, C. Haskard, R. Juvonen, S. Salminen, and H. Mykkanen. 2004. Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG. Journal of Agricultural and Food Chemistry 52 (14): 4577–4581.  https://doi.org/10.1021/jf049924m.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Elsanhoty, Rafaat M., Samir Ahmed Salam, Mohamed Fawzy Ramadan, and Farid H. Badr. 2014. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control 43: 129–134.  https://doi.org/10.1016/j.foodcont.2014.03.002.CrossRefGoogle Scholar
  38. El-Shiekh, Hussein H., Hesham M. Mahdy, and Mahmoud M. El-Aaser. 2007. Bioremediation of aflatoxins by some reference fungal strains. Polish Journal of Microbiology 56 (3): 215.PubMedPubMedCentralGoogle Scholar
  39. Eshelli, Manal, Linda Harvey, RuAngelie Edrada-Ebel, and Brian McNeil. 2015. Metabolomics of the bio-degradation process of aflatoxin B1 by actinomycetes at an initial pH of 6.0. Toxins 7 (2): 439–456.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fawell, J.K., R.E. Mitchell, D.J. Everett, and R.E. Hill. 1999. The toxicity of cyanobacterial toxins in the mouse: I Microcystin-LR. Human & Experimental Toxicology 18 (3): 162–167.  https://doi.org/10.1191/096032799678839842.CrossRefGoogle Scholar
  41. Ferenczi, S., M. Cserhati, C. Krifaton, S. Szoboszlay, J. Kukolya, Z. Szoke, B. Koszegi, M. Albert, T. Barna, M. Mezes, K.J. Kovacs, and B. Kriszt. 2014. A new ochratoxin A biodegradation strategy using Cupriavidus basilensis Or16 strain. PLoS One 9 (10): e109817.  https://doi.org/10.1371/journal.pone.0109817.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Fischer, W.J., S. Altheimer, V. Cattori, P.J. Meier, D.R. Dietrich, and B. Hagenbuch. 2005. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicology and Applied Pharmacology 203 (3): 257–263.  https://doi.org/10.1016/j.taap.2004.08.012.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Fuchs, S., G. Sontag, R. Stidl, V. Ehrlich, M. Kundi, and S. Knasmuller. 2008. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology 46 (4): 1398–1407.  https://doi.org/10.1016/j.fct.2007.10.008.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gehringer, M.M., E.G. Shephard, T.G. Downing, C. Wiegand, and B.A. Neilan. 2004. An investigation into the detoxification of microcystin-LR by the glutathione pathway in Balb/c mice. The International Journal of Biochemistry & Cell Biology 36 (5): 931–941.  https://doi.org/10.1016/j.biocel.2003.10.012.CrossRefGoogle Scholar
  45. Gerbaldo, Gisela A., Carla Barberis, Liliana Pascual, Ana Dalcero, and Lucila Barberis. 2012. Antifungal activity of two Lactobacillus strains with potential probiotic properties. FEMS Microbiology Letters 332 (1): 27–33.PubMedCrossRefPubMedCentralGoogle Scholar
  46. Glaser, N., and H. Stopper. 2012. Patulin: Mechanism of genotoxicity. Food and Chemical Toxicology 50 (5): 1796–1801.  https://doi.org/10.1016/j.fct.2012.02.096.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Gonçalves, Bruna Leonel, Roice Eliana Rosim, Carlos Augusto Fernandes de Oliveira, and Carlos Humberto Corassin. 2015. The in vitro ability of different Saccharomyces cerevisiae–Based products to bind aflatoxin B 1. Food Control 47: 298–300.CrossRefGoogle Scholar
  48. Gourama, Hassan, and Lloyd B. Bullerman. 1995. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. Journal of Food Protection® 58 (11): 1249–1256.CrossRefGoogle Scholar
  49. Gratz, S., H. Mykkänen, A.C. Ouwehand, R. Juvonen, S. Salminen, and H. El-Nezami. 2004. Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Applied and Environmental Microbiology 70 (10): 6306–6308.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gratz, S., Q.K. Wu, H. El-Nezami, R.O. Juvonen, H. Mykkänen, and P.C. Turner. 2007. Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 cells. Applied and Environmental Microbiology 73 (12): 3958–3964.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Grollman, A.P., and B. Jelakovic. 2007. Role of environmental toxins in endemic (Balkan) nephropathy. October 2006, Zagreb, Croatia. Journal of the American Society of Nephrology 18 (11): 2817–2823.  https://doi.org/10.1681/ASN.2007050537.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Guo, C., Y. Yuan, T. Yue, S. Hatab, and Z. Wang. 2012. Binding mechanism of patulin to heat-treated yeast cell. Letters in Applied Microbiology 55 (6): 453–459.  https://doi.org/10.1111/j.1472-765x.2012.03314.x.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Guzman, R.E., and P.F. Solter. 2002. Characterization of sublethal microcystin-LR exposure in mice. Veterinary Pathology 39 (1): 17–26.  https://doi.org/10.1354/Vp.39-1-17.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Halttunen, T., M.C. Collado, H. El-Nezami, J. Meriluoto, and S. Salminen. 2008. Combining strains of lactic acid bacteria may reduce their toxin and heavy metal removal efficiency from aqueous solution. Letters in Applied Microbiology 46 (2): 160–165.  https://doi.org/10.1111/j.1472-765X.2007.02276.x.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Hao, Heying, Ting Zhou, Tatiana Koutchma, Fan Wu, and Keith Warriner. 2016. High hydrostatic pressure assisted degradation of patulin in fruit and vegetable juice blends. Food Control 62: 237–242.  https://doi.org/10.1016/j.foodcont.2015.10.042.CrossRefGoogle Scholar
  56. Haskard, Carolyn, Charlotte Binnion, and Jorma Ahokas. 2000. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chemico-Biological Interactions 128 (1): 39–49.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Haskard, C.A., H.S. El-Nezami, P.E. Kankaanpaa, S. Salminen, and J.T. Ahokas. 2001. Surface binding of aflatoxin B(1) by lactic acid bacteria. Applied and Environmental Microbiology 67 (7): 3086–3091.  https://doi.org/10.1128/AEM.67.7.3086-3091.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Hatab, S., T. Yue, and O. Mohamad. 2012a. Reduction of patulin in aqueous solution by lactic acid bacteria. Journal of Food Science 77 (4): M238–M241.  https://doi.org/10.1111/j.1750-3841.2011.02615.x.CrossRefPubMedPubMedCentralGoogle Scholar
  59. ———. 2012b. Removal of patulin from apple juice using inactivated lactic acid bacteria. Journal of Applied Microbiology 112 (5): 892–899  https://doi.org/10.1111/j.1365-2672.2012.05279.x.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hathout, Amal S., and Soher E. Aly. 2014. Biological detoxification of mycotoxins: a review. Annals of microbiology 64 (3): 905–919.CrossRefGoogle Scholar
  61. Hathout, Amal S., Sherif R. Mohamed, Aziza A. El-Nekeety, Nabila S. Hassan, Soher E. Aly, and Mosaad A. Abdel-Wahhab. 2011. Ability of Lactobacillus casei and Lactobacillus reuteri to protect against oxidative stress in rats fed aflatoxins-contaminated diet. Toxicon 58 (2): 179–186.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hawar, Sumaiya, William Vevers, Sahar Karieb, Batool K. Ali, Richard Billington, and Jane Beal. 2013. Biotransformation of patulin to hydroascladiol by Lactobacillus plantarum. Food Control 34 (2): 502–508.  https://doi.org/10.1016/j.foodcont.2013.05.023.CrossRefGoogle Scholar
  63. Hell, K., C. Mutegi, and P. Fandohan. 2010. Aflatoxin control and prevention strategies in maize for Sub-Saharan Africa. Julius-Kühn-Archiv 425: 534.Google Scholar
  64. Hernandez-Mendoza, A., H.S. Garcia, and J.L. Steele. 2009a. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B 1. Food and Chemical Toxicology 47 (6): 1064–1068.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hernandez-Mendoza, A., D. Guzman-de-Peña, and H.S. Garcia. 2009b. Key role of teichoic acids on aflatoxin B1 binding by probiotic bacteria. Journal of Applied Microbiology 107 (2): 395–403.PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hernandez-Mendoza, Adrián, Doralinda Guzman-De-Peña, Aarón Fernando González-Córdova, Belinda Vallejo-Córdoba, and Hugo Sergio Garcia. 2010. In vivo assessment of the potential protective effect of Lactobacillus casei Shirota against aflatoxin B1. Dairy Science & Technology 90 (6): 729–740.CrossRefGoogle Scholar
  67. Heussner, A.H., and L.E. Bingle. 2015. Comparative ochratoxin toxicity: A review of the available data. Toxins (Basel) 7 (10): 4253–4282.  https://doi.org/10.3390/toxins7104253.CrossRefGoogle Scholar
  68. Hmaissia Khlifa, K., R. Ghali, C. Mazigh, Z. Aouni, S. Machgoul, and A. Hedhili. 2012. Ochratoxin A levels in human serum and foods from nephropathy patients in Tunisia: Where are you now? Experimental and Toxicologic Pathology 64 (5): 509–512.  https://doi.org/10.1016/j.etp.2010.11.006.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Iqbal, S.Z., M.R. Asi, U. Hanif, M. Zuber, and S. Jinap. 2016. The presence of aflatoxins and ochratoxin A in rice and rice products; and evaluation of dietary intake. Food Chemistry 210: 135–140.  https://doi.org/10.1016/j.foodchem.2016.04.104.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Jalili, M., S. Jinap, and A. Noranizan. 2010. Effect of gamma radiation on reduction of mycotoxins in black pepper. Food Control 21 (10): 1388–1393.  https://doi.org/10.1016/j.foodcont.2010.04.012.CrossRefGoogle Scholar
  71. Jayaraj, R., U. Deb, A.S. Bhaskar, G.B. Prasad, and P.V. Rao. 2007. Hepatoprotective efficacy of certain flavonoids against microcystin induced toxicity in mice. Environmental Toxicology 22 (5): 472–479.  https://doi.org/10.1002/tox.20283.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Jindal, N., S.K. Mahipal, and N.K. Mahajan. 1994. Toxicity of aflatoxin B 1 in broiler chicks and its reduction by activated charcoal. Research in Veterinary Science 56 (1): 37–40.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kabak, Bulent, Alan D.W. Dobson, and Işil Var. 2006. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Critical Reviews in Food Science and Nutrition 46 (8): 593–619.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Karthikeyan, S., Dionysios D. Dionysiou, Adam F. Lee, S. Suvitha, P. Maharaja, Karen Wilson, and G. Sekaran. 2016. Hydroxyl radical generation by cactus-like copper oxide nanoporous carbon catalysts for microcystin-LR environmental remediation. Catalysis Science & Technology 6 (2): 530–544.CrossRefGoogle Scholar
  75. Khoury, El, Ali Atoui André, and Joseph Yaghi. 2011. Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control 22 (10): 1695–1699.CrossRefGoogle Scholar
  76. Kokkinidou, S., J.D. Floros, and L.F. LaBorde. 2014. Kinetics of the thermal degradation of patulin in the presence of ascorbic acid. Journal of Food Science 79 (1): T108–T114.  https://doi.org/10.1111/1750-3841.12316.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Kolosova, A., and J. Stroka. 2011. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin Journal 4 (3): 225–256.CrossRefGoogle Scholar
  78. Koszegi, T., and M. Poor. 2016. Ochratoxin A: Molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins (Basel) 8 (4): 111.  https://doi.org/10.3390/toxins8040111.CrossRefGoogle Scholar
  79. Laitila, A., H.-L. Alakomi, L. Raaska, T. Mattila-Sandholm, and A. Haikara. 2002. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. Journal of Applied Microbiology 93 (4): 566–576.PubMedCrossRefGoogle Scholar
  80. Lei, L.M., and L.R. Song. 2005. [Acute toxicity of microcystin-LR in BALB/c mice]. Di Yi Jun Yi Da Xue Xue Bao 25 (5): 565–6, 572.Google Scholar
  81. Lin, M.Y., and C.L. Yen. 1999. Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry 47 (4): 1460–1466.  https://doi.org/10.1021/jf981149l.CrossRefPubMedGoogle Scholar
  82. Liu, B.H., T.S. Wu, F.Y. Yu, and C.H. Wang. 2006. Mycotoxin patulin activates the p38 kinase and JNK signaling pathways in human embryonic kidney cells. Toxicological Sciences 89 (2): 423–430.  https://doi.org/10.1093/toxsci/kfj049.CrossRefPubMedGoogle Scholar
  83. Liu, B.H., T.S. Wu, F.Y. Yu, and C.C. Su. 2007. Induction of oxidative stress response by the mycotoxin patulin in mammalian cells. Toxicological Sciences 95 (2): 340–347.  https://doi.org/10.1093/toxsci/kfl156.CrossRefPubMedGoogle Scholar
  84. Mackintosh, R.W., K.N. Dalby, D.G. Campbell, P.T.W. Cohen, P. Cohen, and C. Mackintosh. 1995. The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase-1. Febs Letters 371 (3): 236–240.  https://doi.org/10.1016/0014-5793(95)00888-g.CrossRefPubMedGoogle Scholar
  85. Maeba, Hide, Yuji Takamoto, M. Inoru Kamimura, and T. Oshiyuki Miura. 1988. Destruction and detoxification of aflatoxins with ozone. Journal of Food Science 53 (2): 667–668.CrossRefGoogle Scholar
  86. Malir, F., V. Ostry, A. Pfohl-Leszkowicz, J. Malir, and J. Toman. 2016. Ochratoxin A: 50 years of research. Toxins (Basel) 8 (7).  https://doi.org/10.3390/toxins8070191.PubMedCentralCrossRefPubMedGoogle Scholar
  87. Martins, Nathan Dias, João Sarkis Yunes, Diana Amaral Monteiro, Francisco Tadeu Rantin, and Ana Lúcia Kalinin. 2017. Microcystin-LR leads to oxidative damage and alterations in antioxidant defense system in liver and gills of Brycon amazonicus (SPIX & AGASSIZ, 1829). Toxicon 139: 109–116.PubMedCrossRefGoogle Scholar
  88. McCormick, S.P. 2013. Microbial detoxification of mycotoxins. Journal of Chemical Ecology 39 (7): 907–918.  https://doi.org/10.1007/s10886-013-0321-0.CrossRefPubMedGoogle Scholar
  89. Méndez-Albores, A., J.C. Del Río-García, and E. Moreno-Martínez. 2007. Decontamination of aflatoxin duckling feed with aqueous citric acid treatment. Animal Feed Science and Technology 135 (3–4): 249–262.  https://doi.org/10.1016/j.anifeedsci.2006.07.009.CrossRefGoogle Scholar
  90. Mishra, H.N., and Chitrangada Das. 2003. A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition 43: 245.PubMedCrossRefGoogle Scholar
  91. Molnar, O., G. Schatzmayr, E. Fuchs, and H. Prillinger. 2004. Trichosporon mycotoxinivorans sp. nov., a new yeast species useful in biological detoxification of various mycotoxins. Systematic and Applied Microbiology 27 (6): 661–671.  https://doi.org/10.1078/0723202042369947.CrossRefPubMedGoogle Scholar
  92. Morales, Héctor, Sonia Marín, Antonio J. Ramos, and Vicente Sanchis. 2010. Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control 21 (7): 953–962.  https://doi.org/10.1016/j.foodcont.2009.12.016.CrossRefGoogle Scholar
  93. Moss, M.O., and M.T. Long. 2002. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Additives and Contaminants 19 (4): 387–399.  https://doi.org/10.1080/02652030110091163.CrossRefPubMedGoogle Scholar
  94. Ndagano, Dora, Thibaut Lamoureux, Carine Dortu, Sophie Vandermoten, and Philippe Thonart. 2011. Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. Journal of Food Science 76 (6): M305–M311.PubMedCrossRefGoogle Scholar
  95. Nishiwakimatsushima, R., T. Ohta, S. Nishiwaki, M. Suganuma, K. Kohyama, T. Ishikawa, W.W. Carmichael, and H. Fujiki. 1992. Liver-tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. Journal of Cancer Research and Clinical Oncology 118 (6): 420–424.  https://doi.org/10.1007/bf01629424.CrossRefGoogle Scholar
  96. Nybom, Sonja M.K., M. Carmen Collado, Ingrid S. Surono, Seppo J. Salminen, and Jussi A.O. Meriluoto. 2008. Effect of glucose in removal of microcystin-LR by viable commercial probiotic strains and strains isolated from dadih fermented milk. Journal of Agricultural and Food Chemistry 56 (10): 3714–3720.  https://doi.org/10.1021/jf071835x.CrossRefPubMedGoogle Scholar
  97. Nybom, S.M., D. Dziga, J.E. Heikkila, T.P. Kull, S.J. Salminen, and J.A. Meriluoto. 2012. Characterization of microcystin-LR removal process in the presence of probiotic bacteria. Toxicon 59 (1): 171–181.  https://doi.org/10.1016/j.toxicon.2011.11.008.CrossRefPubMedGoogle Scholar
  98. Oluwafemi, Flora, Manjula Kumar, Ranajit Bandyopadhyay, Tope Ogunbanwo, and Kayode B. Ayanwande. 2010. Bio-detoxification of aflatoxin B1 in artificially contaminated maize grains using lactic acid bacteria. Toxin Reviews 29 (3-4): 115–122.CrossRefGoogle Scholar
  99. Onilude, A.A., O.E. Fagade, M.M. Bello, and I.F. Fadahunsi. 2005. Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria isolates from indigenously fermented cereal gruels. African Journal of Biotechnology 4 (12).Google Scholar
  100. Park, Douglas L. 2002. Effect of processing on aflatoxin. In Mycotoxins and food safety, 173–179. Boston: Springer.CrossRefGoogle Scholar
  101. Peltonen, K., H. El-Nezami, C. Haskard, J. Ahokas, and S. Salminen. 2001. Aflatoxin B 1 binding by dairy strains of lactic acid bacteria and bifidobacteria. Journal of Dairy Science 84 (10): 2152–2156.PubMedCrossRefGoogle Scholar
  102. Peng, Chunhong, Ding Yang, Fengping An, Li Wang, Shuying Li, Ying Nie, Linyan Zhou, Yaru Li, Changgang Wang, and Shurong Li. 2015. Degradation of ochratoxin A in aqueous solutions by electron beam irradiation. Journal of Radioanalytical and Nuclear Chemistry 306 (1): 39–46.  https://doi.org/10.1007/s10967-015-4086-5.CrossRefGoogle Scholar
  103. Peng, Xiaoning, Bingjie Liu, Wei Chen, Xiaohong Li, Qianrui Wang, Xianghong Meng, and Dongfeng Wang. 2016. Effective biosorption of patulin from apple juice by cross-linked xanthated chitosan resin. Food Control 63: 140–146.  https://doi.org/10.1016/j.foodcont.2015.11.039.CrossRefGoogle Scholar
  104. Pepeljnjak, S., and M.S. Klaric. 2010. Suspects in etiology of endemic nephropathy: Aristolochic acid versus mycotoxins. Toxins (Basel) 2 (6): 1414–1427.  https://doi.org/10.3390/toxins2061414.CrossRefGoogle Scholar
  105. Petzinger, E., and K. Ziegler. 2000. Ochratoxin A from a toxicological perspective. Journal of Veterinary Pharmacology and Therapeutics 23 (2): 91–98.PubMedCrossRefGoogle Scholar
  106. Pierides, Maritsa, Hani El-Nezami, Karita Peltonen, Seppo Salminen, and Jorma Ahokas. 2000. Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model. Journal of Food Protection® 63 (5): 645–650.CrossRefGoogle Scholar
  107. Piotrowska, M. 2014. The adsorption of ochratoxin a by lactobacillus species. Toxins (Basel) 6 (9): 2826–2839.  https://doi.org/10.3390/toxins6092826.CrossRefGoogle Scholar
  108. Piotrowska, M., and Z. Zakowska. 2005. The elimination of ochratoxin A by lactic acid bacteria strains. Polish Journal of Microbiology 54 (4): 279–286.PubMedPubMedCentralGoogle Scholar
  109. Pizzolitto, R.P., M.A. Salvano, and A.M. Dalcero. 2012. Analysis of fumonisin B1 removal by microorganisms in co-occurrence with aflatoxin B1 and the nature of the binding process. International Journal of Food Science & Technology 156 (3): 214–221.  https://doi.org/10.1016/j.ijfoodmicro.2012.03.024.CrossRefGoogle Scholar
  110. Prieto, A.I., A. Jos, S. Pichardo, I. Moreno, and A.M. Camean. 2008. Protective role of vitamin E on the microcystin-induced oxidative stress in tilapia fish (Oreochromis niloticus). Environmental Toxicology and Chemistry 27 (5): 1152–1159.  https://doi.org/10.1897/07-496.1.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Prior, R.L., X.L. Wu, and K. Schaich. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry 53 (10): 4290–4302.  https://doi.org/10.1021/jf0502698.CrossRefPubMedPubMedCentralGoogle Scholar
  112. Puel, O., P. Galtier, and I.P. Oswald. 2010. Biosynthesis and toxicological effects of patulin. Toxins (Basel) 2 (4): 613–631.  https://doi.org/10.3390/toxins2040613.CrossRefGoogle Scholar
  113. Raju, M.V.L.N., and G. Devegowda. 2000. Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). British Poultry Science 41 (5): 640–650.PubMedCrossRefPubMedCentralGoogle Scholar
  114. Rawal, Sumit, Ji Eun Kim, and Roger Coulombe. 2010. Aflatoxin B 1 in poultry: toxicology, metabolism and prevention. Research in Veterinary Science 89 (3): 325–331.PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ricelli, A., F. Baruzzi, M. Solfrizzo, M. Morea, and F.P. Fanizzi. 2007. Biotransformation of patulin by Gluconobacter oxydans. Applied and Environmental Microbiology 73 (3): 785–792.  https://doi.org/10.1128/AEM.02032-06.CrossRefPubMedPubMedCentralGoogle Scholar
  116. Richard, John L. 2007. Some major mycotoxins and their mycotoxicoses—An overview. International Journal of Food Microbiology 119 (1): 3–10.PubMedCrossRefPubMedCentralGoogle Scholar
  117. Richard, J.L., G.A. Payne, A.E. Desjardins, C. Maragos, W.P. Norred, and J.J. Pestka. 2003. Mycotoxins: Risks in plant, animal and human systems. CAST Task Force Report 139: 101–103.Google Scholar
  118. Rodriguez, H., I. Reveron, F. Doria, A. Costantini, B. De Las Rivas, R. Munoz, and E. Garcia-Moruno. 2011. Degradation of ochratoxin a by Brevibacterium species. Journal of Agricultural and Food Chemistry 59 (19): 10755–10760.  https://doi.org/10.1021/jf203061p.CrossRefPubMedGoogle Scholar
  119. Russo, P., V. Capozzi, G. Spano, M.R. Corbo, M. Sinigaglia, and A. Bevilacqua. 2016. Metabolites of microbial origin with an impact on health: Ochratoxin A and biogenic amines. Frontiers in Microbiology 7: 482.  https://doi.org/10.3389/fmicb.2016.00482.CrossRefPubMedPubMedCentralGoogle Scholar
  120. Rustom, Ismail Y.S. 1997. Aflatoxin in food and feed: Occurrence, legislation and inactivation by physical methods. Food Chemistry 59 (1): 57–67.CrossRefGoogle Scholar
  121. Samarajeewa, U., A.C. Sen, M.D. Cohen, and C.I. Wei. 1990. Detoxification of aflatoxins in foods and feeds by physical and chemical methods. Journal of Food Protection® 53 (6): 489–501.CrossRefGoogle Scholar
  122. Samuel, S. Melvin, Visenuo Aiko, Pragyanshree Panda, and Alka Mehta. 2013. Aflatoxin B-1 occurrence, biosynthesis and its degradation. Journal of Pure and Applied Microbiology 7 (2): 965–971.Google Scholar
  123. Samuel, Melvin S., Akella Sivaramakrishna, and Alka Mehta. 2014. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. International Biodeterioration & Biodegradation 86: 202–209.CrossRefGoogle Scholar
  124. San Martin, M.F., G.V. Barbosa-Canovas, and B.G. Swanson. 2002. Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition 42 (6): 627–645.  https://doi.org/10.1080/20024091054274.CrossRefPubMedGoogle Scholar
  125. Sangare, Lancine, Yueju Zhao, Yawa Minnie Elodie Folly, Jinghua Chang, Jinhan Li, Jonathan Nimal Selvaraj, Fuguo Xing, Zhou Lu, Yan Wang, and Liu Yang. 2014. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins 6 (10): 3028–3040.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sant’Ana, Anderson de Souza, Amauri Rosenthal, and Pilar Rodriguez de Massaguer. 2008. The fate of patulin in apple juice processing: A review. Food Research International 41 (5): 441–453.  https://doi.org/10.1016/j.foodres.2008.03.001.CrossRefGoogle Scholar
  127. Savino, M., P. Limosani, and E. Garcia-Moruno. 2007. Reduction of ochratoxin A contamination in red wines by oak wood fragments. American Journal of Enology and Viticulture 58 (1): 97–101.Google Scholar
  128. Schatzmayr, G., D. Heidler, E. Fuchs, S. Nitsch, M. Mohnl, M. Taubel, A.P. Loibner, R. Braun, and E.M. Binder. 2003. Investigation of different yeast strains for the detoxification of ochratoxin A. Mycotoxin Research 19 (2): 124–128.  https://doi.org/10.1007/BF02942950.CrossRefPubMedGoogle Scholar
  129. Schnürer, Johan, and Jesper Magnusson. 2005. Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology 16 (1-3): 70–78.  https://doi.org/10.1016/j.tifs.2004.02.014.CrossRefGoogle Scholar
  130. Scott, P.M. 1984. Effects of food processing on mycotoxins. Journal of Food Protection® 47 (6): 489–499.CrossRefGoogle Scholar
  131. Serrano-Niño, J.C., A. Cavazos-Garduño, F. Cantú-Cornelio, A.F. González-Córdova, B. Vallejo-Córdoba, A. Hernández-Mendoza, and H.S. García. 2015. In vitro reduced availability of aflatoxin B1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains. LWT – Food Science and Technology 64 (2): 1334–1341.  https://doi.org/10.1016/j.lwt.2015.07.015.CrossRefGoogle Scholar
  132. Shcherbakova, Larisa, Natalia Statsyuk, Oleg Mikityuk, Tatyana Nazarova, and Vitaly Dzhavakhiya. 2015. Aflatoxin B1 degradation by metabolites of Phoma glomerata PG41 isolated from natural substrate colonized by aflatoxigenic Aspergillus flavus. Jundishapur Journal of Microbiology 8 (1): e24324.PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shen, P.P., S.W. Zhao, W.J. Zheng, Z.C. Hua, Q. Shi, and Z.T. Liu. 2003. Effects of cyanobacteria bloom extract on some parameters of immune function in mice. Toxicology Letters 143 (1): 27–36.  https://doi.org/10.1016/S0378-4274(03)00110-3.CrossRefPubMedPubMedCentralGoogle Scholar
  134. Shetty, Prathapkumar Halady, and Lene Jespersen. 2006. Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science & Technology 17 (2): 48–55.CrossRefGoogle Scholar
  135. Shetty, Prathapkumar Halady, Benedicte Hald, and Lene Jespersen. 2007. Surface binding of aflatoxin B 1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology 113 (1): 41–46.PubMedCrossRefPubMedCentralGoogle Scholar
  136. Soriano, J.M., L. Gonzalez, and A.I. Catala. 2005. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin B1. Progress in Lipid Research 44 (6): 345–356.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Stander, Maria A., Uwe T. Bornscheuer, and Pieter S. Steyn. 2000. Screening of commercial hydrolases for the degradation of ochratoxin A. Journal of Agricultural and Food Chemistry 48 (11): 5736–5738.PubMedCrossRefPubMedCentralGoogle Scholar
  138. Streit, E., G. Schatzmayr, P. Tassis, E. Tzika, D. Marin, I. Taranu, C. Tabuc, A. Nicolau, I. Aprodu, O. Puel, and I.P. Oswald. 2012. Current situation of mycotoxin contamination and co-occurrence in animal feed–focus on Europe. Toxins (Basel) 4 (10): 788–809.  https://doi.org/10.3390/toxins4100788.CrossRefGoogle Scholar
  139. Strosnider, Heather, Eduardo Azziz-Baumgartner, Marianne Banziger, Ramesh V. Bhat, Robert Breiman, Marie-Noel Brune, Kevin DeCock, Abby Dilley, John Groopman, and Kerstin Hell. 2006. Workgroup report: Public health strategies for reducing aflatoxin exposure in developing countries. Environmental Health Perspectives: 1898–1903.Google Scholar
  140. Sun, X., L. Mi, J. Liu, L. Song, F.L. Chung, and N. Gan. 2011. Sulforaphane prevents microcystin-LR-induced oxidative damage and apoptosis in BALB/c mice. Toxicology and Applied Pharmacology 255 (1): 9–17.  https://doi.org/10.1016/j.taap.2011.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  141. Sun, Lv-Hui, Ni-Ya Zhang, Ran-Ran Sun, Xin Gao, Gu Changqin, Christopher Steven Krumm, and De-Sheng Qi. 2015. A novel strain of Cellulosimicrobium funkei can biologically detoxify aflatoxin B1 in ducklings. Microbial Biotechnology 8 (3): 490–498.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Surono, I.S., M.C. Collado, S. Salminen, and J. Meriluoto. 2008. Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR. Food and Chemical Toxicology 46 (2): 502–507.  https://doi.org/10.1016/j.fct.2007.08.017.CrossRefPubMedPubMedCentralGoogle Scholar
  143. Teniola, O.D., P.A. Addo, I.M. Brost, P. Färber, K.-D. Jany, J.F. Alberts, W.H. Van Zyl, P.S. Steyn, and W.H. Holzapfel. 2005. Degradation of aflatoxin B 1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556 T. International Journal of Food Microbiology 105 (2): 111–117.PubMedCrossRefPubMedCentralGoogle Scholar
  144. Terzi, Valeria, Tumino Giorgio, A. Michele Stanca, and Caterina Morcia. 2014. Reducing the incidence of cereal head infection and mycotoxins in small grain cereal species. Journal of Cereal Science 59 (3): 284–293.CrossRefGoogle Scholar
  145. Toivola, D.M., J.E. Eriksson, and D.L. Brautigan. 1994. Identification of protein phosphatase 2A as the primary target for microcystin-LR in rat liver homogenates. FEBS Letters 344 (2-3): 175–180.PubMedCrossRefPubMedCentralGoogle Scholar
  146. Topcu, A., T. Bulat, R. Wishah, and I.H. Boyaci. 2010. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. International Journal of Food Microbiology 139 (3): 202–205.  https://doi.org/10.1016/j.ijfoodmicro.2010.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  147. Turan, Eylem, and Ferat Şahin. 2016. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sensors and Actuators B: Chemical 227: 668–676.  https://doi.org/10.1016/j.snb.2015.12.087.CrossRefGoogle Scholar
  148. Turbic, A., J.T. Ahokas, and C.A. Haskard. 2002. Selective in vitro binding of dietary mutagens, individually or in combination, by lactic acid bacteria. Food Additives & Contaminants 19 (2): 144–152.  https://doi.org/10.1080/02652030110070067.CrossRefGoogle Scholar
  149. Valerio, Francesca, Paola Lavermicocca, Michelangelo Pascale, and Angelo Visconti. 2004. Production of phenyllactic acid by lactic acid bacteria: An approach to the selection of strains contributing to food quality and preservation. FEMS Microbiology Letters 233 (2): 289–295.PubMedCrossRefPubMedCentralGoogle Scholar
  150. Valerio, Francesca, Mara Favilla, Palmira De Bellis, Angelo Sisto, Silvia de Candia, and Paola Lavermicocca. 2009. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Systematic and Applied Microbiology 32 (6): 438–448.PubMedCrossRefPubMedCentralGoogle Scholar
  151. Vanne, L., T. Kleemola, and A. Haikara. 2001. Screening of the antifungal effect of lactic acid bacteria against toxigenic Penicillium and Aspergillus strains. BMS international symposium on bioactive fungal metabolites–impact and exploitation, University of Wales, Swansea, Wales.Google Scholar
  152. Wang, L., Z. Wang, Y. Yuan, R. Cai, C. Niu, and T. Yue. 2015a. Identification of key factors involved in the biosorption of patulin by inactivated lactic acid bacteria (LAB) cells. PLoS One 10 (11): e0143431.  https://doi.org/10.1371/journal.pone.0143431.CrossRefPubMedPubMedCentralGoogle Scholar
  153. Wang, Ling, Tianli Yue, Yahong Yuan, Zhouli Wang, Mengqi Ye, and Rui Cai. 2015b. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells. Food Control 50: 104–110.  https://doi.org/10.1016/j.foodcont.2014.08.041.CrossRefGoogle Scholar
  154. Wang, Y., J.Z. Zhou, X.D. Xia, Y.C. Zhao, and W.L. Shao. 2016. Probiotic potential of Lactobacillus paracasei FM-LP-4 isolated from Xinjiang camel milk yoghurt. International Dairy Journal 62: 28–34.  https://doi.org/10.1016/j.idairyj.2016.07.001.CrossRefGoogle Scholar
  155. Williams, Jonathan H., Timothy D. Phillips, Pauline E. Jolly, Jonathan K. Stiles, Curtis M. Jolly, and Deepak Aggarwal. 2004. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. The American Journal of Clinical Nutrition 80 (5): 1106–1122.PubMedCrossRefPubMedCentralGoogle Scholar
  156. Woo, C.S., and H. El-Nezami. 2016. Maternal-fetal cancer risk assessment of Ochratoxin A during pregnancy. Toxins (Basel) 8 (4): 87.  https://doi.org/10.3390/toxins8040087.CrossRefGoogle Scholar
  157. Wu, Qinghua, Alena Jezkova, Zonghui Yuan, Lucie Pavlikova, Vlastimil Dohnal, and Kamil Kuca. 2009. Biological degradation of aflatoxins. Drug Metabolism Reviews 41 (1): 1–7.PubMedCrossRefGoogle Scholar
  158. Wu, Qinghua, Vlastimil Dohnal, Lingli Huang, Kamil Kuca, Wang Xu, Guyue Chen, and Zonghui Yuan. 2011. Metabolic pathways of Ochratoxin A. Current Drug Metabolism 12 (1): 1–10.  https://doi.org/10.2174/138920011794520026.CrossRefPubMedGoogle Scholar
  159. Wu, J., S. Shao, F. Zhou, S. Wen, F. Chen, and X. Han. 2014. Reproductive toxicity on female mice induced by microcystin-LR. Environmental Toxicology and Pharmacology 37 (1): 1–6.  https://doi.org/10.1016/j.etap.2013.10.012.CrossRefPubMedGoogle Scholar
  160. Wu, Yuan-Zhen, Fu-Pu Lu, Hai-Lan Jiang, Cui-Ping Tan, Dong-Sheng Yao, Chun-Fang Xie, and Da-Ling Liu. 2015. The furofuran-ring selectivity, hydrogen peroxide-production and low K m value are the three elements for highly effective detoxification of aflatoxin oxidase. Food and Chemical Toxicology 76: 125–131.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Xu, C., W.Q. Shu, Z.Q. Qiu, J.A. Chen, Q. Zhao, and J. Cao. 2007. Protective effects of green tea polyphenols against subacute hepatotoxicity induced by microcystin-LR in mice. Environmental Toxicology and Pharmacology 24 (2): 140–148.  https://doi.org/10.1016/j.etap.2007.04.004.CrossRefPubMedGoogle Scholar
  162. Yang, E.J., and H.C. Chang. 2010. Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. International Journal of Food Microbiology 139 (1): 56–63.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Yang, Y., Q. Li, and G.Z. Fang. 2016. Preparation and evaluation of novel surface molecularly imprinted polymers by sol–gel process for online solid-phase extraction coupled with high performance liquid. RSC Advances 6: 54510–54517.  https://doi.org/10.1039/C6RA08736A10.1039/c6ra08736a.CrossRefGoogle Scholar
  164. Yehia, Ramy Sayed. 2014. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Brazilian Journal of Microbiology 45 (1): 127–134.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yuan, Y., X. Wang, S. Hatab, Z. Wang, Y. Wang, Y. Luo, and T. Yue. 2014. Patulin reduction in apple juice by inactivated Alicyclobacillus spp. Letters in Applied Microbiology 59 (6): 604–609.  https://doi.org/10.1111/lam.12315.CrossRefPubMedPubMedCentralGoogle Scholar
  166. Zhang, J., Z. Zheng, J. Luan, G. Yang, W. Song, Y. Zhong, and Z. Xie. 2007. Degradation of hexachlorobenzene by electron beam irradiation. Journal of Hazardous Materials 142 (1-2): 431–436.  https://doi.org/10.1016/j.jhazmat.2006.08.035.CrossRefPubMedPubMedCentralGoogle Scholar
  167. Zhang, Shu-wen, L. Jia-ping, Bilige Menghe, Liu Lu, and Hu. Xian-bao. 2010a. Antioxidative activity of Lactobacillus casei subsp. casei SY13 on ageing model mice. Scientia Agricultura Sinica 43 (10).Google Scholar
  168. Zhang, Yong, Du Ruiting, Lifeng Wang, and Heping Zhang. 2010b. The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. European Food Research and Technology 231 (1): 151–158.  https://doi.org/10.1007/s00217-010-1255-1.CrossRefGoogle Scholar
  169. Zhang, Z., L. Yu, L. Xu, X. Hu, P. Li, Q. Zhang, X. Ding, and X. Feng. 2014. Biotoxin sensing in food and environment via microchip. Electrophoresis 35 (11): 1547–1559.  https://doi.org/10.1002/elps.201300570.CrossRefPubMedPubMedCentralGoogle Scholar
  170. Zhang, Xiaorui, Yurong Guo, Ma Yu, Yonghai Chai, and Yangyang Li. 2016. Biodegradation of patulin by a Byssochlamys nivea strain. Food Control 64: 142–150.  https://doi.org/10.1016/j.foodcont.2015.12.016.CrossRefGoogle Scholar
  171. Zhao, L.H., S. Guan, X. Gao, Q.G. Ma, Y.P. Lei, X.M. Bai, and C. Ji. 2011. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. Journal of Applied Microbiology 110 (1): 147–155.PubMedCrossRefPubMedCentralGoogle Scholar
  172. Zhao, Jichun, Fengwei Tian, Qixiao Zhai, Ruipeng Yu, Hao Zhang, Gu Zhennan, and Wei Chen. 2017. Protective effects of a cocktail of lactic acid bacteria on microcystin-LR-induced hepatotoxicity and oxidative damage in BALB/c mice. RSC Advances 7 (33): 20480–20487.CrossRefGoogle Scholar
  173. Zhou, Yuan, Jintao Yuan, Jiang Wu, and Xiaodong Han. 2012. The toxic effects of microcystin-LR on rat spermatogonia in vitro. Toxicology Letters 212 (1): 48–56.  https://doi.org/10.1016/j.toxlet.2012.05.001.CrossRefPubMedGoogle Scholar
  174. Zinedine, Abdellah, Jose Miguel Soriano, Juan Carlos Molto, and Jordi Manes. 2007. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and Chemical Toxicology 45 (1): 1–18.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Quadram Institute BioscienceNorwichUK
  2. 2.School of Food Science and Technology, Jiangnan UniversityWuxiChina

Personalised recommendations