Advertisement

Introduction

  • Wei ChenEmail author
  • Wang Linlin 
Chapter

Abstract

Food microbiology is the science which studies microorganisms that inhabit, create, or contaminate foods, which normally are of plant and animal origins. Among food-related microorganisms studies so far, probiotic lactic acid bacteria draw extensive attention for their unquestionable importance in food, industry, and health-related fields. This chapter gives a brief introduction to the historical background, habitats, taxonomy, role, and significance of lactic acid bacteria and ends with some thoughts about future development in this field. Taken together, this general introduction hopefully helps the reader to familiarize with the subject and makes the digestion of the more specific aspects easier.

Keywords

Lactic acid bacteria Habitats Taxonomy Safety 

References

  1. Aguete, E.C., A. Gago-Martínez, J.A. Rodríguez-Vázquez, S. O’Connell, C. Moroney, and K.J. James. 2001. Application of HPLC and HPCE to the analysis of cyanobacterial toxins. Chromatographia 53 (1): S254–S259.CrossRefGoogle Scholar
  2. Antoniou, Maria G., Armah A. De La Cruz, and Dionysios D. Dionysiou. 2005. Cyanotoxins: New generation of water contaminants. Journal of Environmental Engineering 131 (9): 1239–1243.CrossRefGoogle Scholar
  3. Appell, Michael, Mary Ann Dombrink-Kurtzman, and David F. Kendra. 2009. Comparative study of patulin, ascladiol, and neopatulin by density functional theory. Journal of Molecular Structure Theochem 894 (1): 23–31.CrossRefGoogle Scholar
  4. Backhed, F., H. Ding, T. Wang, L.V. Hooper, G.Y. Koh, A. Nagy, C.F. Semenkovich, and J.I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America 101 (44): 15718–15723.  https://doi.org/10.1073/pnas.0407076101.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrangou, Rodolphe, Sampo Lahtinen, Fandi Ibrahim, and Arthur Ouwehand. 2011. Genus lactobacillus [M]. In Lactic Acid Bacteria, 77–91.CrossRefGoogle Scholar
  6. Beijerinck, M. 1901. Sur les ferments lactiques de l’industrie. Archives Néerlandaises des. Sciences Exactes et Naturelles 6: 212–243.Google Scholar
  7. Blondeau, C. 1847. Des fermentations. Journal de Pharmacie 312: 244–261.Google Scholar
  8. Cani, P.D., A. Everard, and T. Duparc. 2013. Gut microbiota, enteroendocrine functions and metabolism. Current Opinion in Pharmacology 13 (6): 935–940.  https://doi.org/10.1016/j.coph.2013.09.008.CrossRefPubMedGoogle Scholar
  9. Cheikhyoussef, A., N. Pogori, W. Chen, and H. Zhang. 2008. Antimicrobial proteinaceous compounds obtained from bifidobacteria: From production to their application. International Journal of Food Microbiology 125 (3): 215–222.  https://doi.org/10.1016/j.ijfoodmicro.2008.03.012.CrossRefPubMedGoogle Scholar
  10. Cheikhyoussef, A., N. Pogori, H.Q. Chen, F.W. Tian, W. Chen, J. Tang, and H. Zhang. 2009. Antimicrobial activity and partial characterization of bacteriocin-like inhibitory substances (BLIS) produced by Bifidobacterium infantis BCRC 14602. Food Control 20 (6): 553–559.  https://doi.org/10.1016/j.foodcont.2008.08.003.CrossRefGoogle Scholar
  11. Cheikhyoussef, A., N. Cheikhyoussef, H.Q. Chen, J.X. Zhao, J. Tang, H. Zhang, and W. Chen. 2010. Bifidin I – A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence. Food Control 21 (5): 746–753.  https://doi.org/10.1016/j.foodcont.2009.11.003.CrossRefGoogle Scholar
  12. Chen, X.H., X.M. Liu, F.W. Tian, Q.X. Zhang, H.P. Zhang, H. Zhang, and W. Chen. 2012a. Antagonistic activities of Lactobacilli against helicobacter pylori growth and infection in human gastric epithelial cells. Journal of Food Science 77 (1): M9–M14.  https://doi.org/10.1111/j.1750-3841.2011.02498.x.CrossRefPubMedGoogle Scholar
  13. Chen, H.Q., F.W. Tian, S. Li, Y. Xie, H. Zhang, and W. Chen. 2012b. Cloning and heterologous expression of a bacteriocin sakacin P from Lactobacillus sakei in Escherichia coli. Applied Microbiology and Biotechnology 94 (4): 1061–1068.  https://doi.org/10.1007/s00253-012-3872-z.CrossRefPubMedGoogle Scholar
  14. Costello, P.J., and P.A. Henschke. 2002. Mousy off-flavor of wine: Precursors and biosynthesis of the causative N-heterocycles 2-ethyltetrahydropyridine, 2-acetyltetrahydropyridine, and 2-acetyl-1-pyrroline by Lactobacillus hilgardii DSM 20176. Journal of Agricultural and Food Chemistry 50 (24): 7079–7087.  https://doi.org/10.1021/jf020341r.CrossRefPubMedGoogle Scholar
  15. Cvetković, Biljana R., Lato L. Pezo, Tatjana Tasić, Ljubiša Šarić, Žarko Kevrešan, and Jasna Mastilović. 2015. The optimisation of traditional fermentation process of white cabbage (in relation to biogenic amines and polyamines content and microbiological profile). Food Chemistry 168: 471.CrossRefGoogle Scholar
  16. Delmulle, Barbara S., Sarahg De Saeger, Liberty Sibanda, Ildiko Barna-Vetro, and Carlos H. Van Peteghem. 2005. Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B_1 in pig feed. Journal of Agricultural and Food Chemistry 53 (9): 3364–3368.CrossRefGoogle Scholar
  17. Duarte, S.C., A. Pena, and C.M. Lino. 2010. A review on ochratoxin A occurrence and effects of processing of cereal and cereal derived food products. Food Microbiology 27 (2): 187–198.CrossRefGoogle Scholar
  18. Fan, H., Y. Luo, X. Yin, Y. Bao, and L. Feng. 2014. Biogenic amine and quality changes in lightly salt- and sugar-salted black carp (Mylopharyngodon piceus) fillets stored at 4°C. Food Chemistry 159: 20–28.CrossRefGoogle Scholar
  19. Forslund, K., F. Hildebrand, T. Nielsen, G. Falony, E. Le Chatelier, S. Sunagawa, E. Prifti, S. Vieira-Silva, V. Gudmundsdottir, H.K. Pedersen, M. Arumugam, K. Kristiansen, A.Y. Voigt, H. Vestergaard, R. Hercog, P.I. Costea, J.R. Kultima, J.H. Li, T. Jorgensen, F. Levenez, J. Dore, H.B. Nielsen, S. Brunak, J. Raes, T. Hansen, J. Wang, S.D. Ehrlich, P. Bork, O. Pedersen, and MetaHIT Consortium. 2015. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528 (7581): 262–266.  https://doi.org/10.1038/nature15766.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fuchs, S., G. Sontag, R. Stidl, V. Ehrlich, M. Kundi, and S. Knasmüller. 2008. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology 46 (4): 1398–1407.CrossRefGoogle Scholar
  21. Gaspar, P., A.L. Carvalho, S. Vinga, H. Santos, and A.R. Neves. 2013. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances 31 (6): 764–788.  https://doi.org/10.1016/j.biotechadv.2013.03.011.CrossRefPubMedGoogle Scholar
  22. Gasser, F., and M. Mandel. 1968. Deoxyribonucleic acid base composition of the genus Lactobacillus. Journal of Bacteriology 96 (3): 580.PubMedPubMedCentralGoogle Scholar
  23. Geiger, Walton B., and Jean E. Conn. 1945. The mechanism of the antibiotic action of clavacin and penicillic acid 1, 2. Journal of the American Chemical Society 67 (1): 112–116.CrossRefGoogle Scholar
  24. Gerbino, E., P. Mobili, E.E. Tymczyszyn, C. Frausto-Reyes, C. Araujo-Andrade, and A. Gómez-Zavaglia. 2012. Use of Raman spectroscopy and chemometrics for the quantification of metal ions attached to Lactobacillus kefir. Journal of Applied Microbiology 112 (2): 363–371.CrossRefGoogle Scholar
  25. Grigoroff, S. 1905. Etude sur un lait fermente comestible. Le ‘Kisselo-Mleko’ de Bulgarie. Revue médicale de la Suisse romande 35: 714–720Google Scholar
  26. Guarcello, Rosa, Annamaria Diviccaro, Marcella Barbera, Elena Giancippoli, Luca Settanni, Fabio Minervini, Giancarlo Moschetti, and Marco Gobbetti. 2015. A survey of the main technology, biochemical and microbiological features influencing the concentration of biogenic amines of twenty Apulian and Sicilian (Southern Italy) cheeses. International Dairy Journal 43: 61–69.CrossRefGoogle Scholar
  27. Guo, X., F.F. Zhou, C. Chen, Z.J. Wu, H.P. Zhang, Y. Xu, H. Zhang, B.H. Guo, Y.Y. Wang, and W. Chen. 2010. Antagonistic activities of Lactobacillus plantarum Guo against enteric pathogens and its protective effect on Caco-2 cells. Milchwissenschaft-Milk Science International 65 (1): 28–31.Google Scholar
  28. Halttunen, T., M. Finell, and S. Salminen. 2007. Arsenic removal by native and chemically modified lactic acid bacteria. International Journal of Food Microbiology 120 (1–2): 173.CrossRefGoogle Scholar
  29. Hatab, S., T. Yue, and O. Mohamad. 2012. Removal of patulin from apple juice using inactivated lactic acid bacteria. Journal of Applied Microbiology 112 (5): 892–899.CrossRefGoogle Scholar
  30. Hoppe, M., G. Önning, A. Berggren, and L. Hulthén. 2015. Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: A double-isotope cross-over single-blind study in women of reproductive age. British Journal of Nutrition 114 (8): 1195–1202.CrossRefGoogle Scholar
  31. Hugenholtz, J., W. Sybesma, M.N. Groot, W. Wisselink, V. Ladero, K. Burgess, D. van Sinderen, J.C. Piard, G. Eggink, E.J. Smid, G. Savoy, F. Sesma, T. Jansen, P. Hols, and M. Kleerebezem. 2002. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology 82 (1–4): 217–235.  https://doi.org/10.1023/A:1020608304886.CrossRefGoogle Scholar
  32. Jing, Li, Shaojun Guo, Yueming Zhai, and Erkang Wang. 2009. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Analytica Chimica Acta 649 (2): 196–201.CrossRefGoogle Scholar
  33. Lahtinen, S.J., R.J. Boyle, S. Kivivuori, F. Oppedisano, K.R. Smith, R. Robinsbrowne, S.J. Salminen, and M.L. Tang. 2009. Prenatal probiotic administration can influence Bifidobacterium microbiota development in infants at high risk of allergy. The Journal of Allergy and Clinical Immunology 123 (2): 499–501.CrossRefGoogle Scholar
  34. Lavermicocca, P., F. Valerio, and A. Visconti. 2003. Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology 69 (1): 634–640.CrossRefGoogle Scholar
  35. Lee, W.J., and K. Hase. 2014. Gut microbiota-generated metabolites in animal health and disease. Nature Chemical Biology 10 (6): 416–424.  https://doi.org/10.1038/nchembio.1535.CrossRefPubMedGoogle Scholar
  36. Li, Miaoyun, Tian Lu, Gaiming Zhao, Qiuhui Zhang, Xiaoping Gao, Xianqing Huang, and Lingxia Sun. 2014. Formation of biogenic amines and growth of spoilage-related microorganisms in pork stored under different packaging conditions applying PCA. Meat Science 96 (2): 843–848.CrossRefGoogle Scholar
  37. Lin, Z., C. Zhou, J. Wu, J. Zhou, and L. Wang. 2005. A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 61 (6): 1195–1200.CrossRefGoogle Scholar
  38. Lister. 1873. On the lactic fermentation and its bearings on pathology. Transactions of the Pathological Society of London 29: 425–467.Google Scholar
  39. Liu, X.M., W.Y. Liu, Q.X. Zhang, F.W. Tian, G. Wang, H. Zhang, and W. Chen. 2013. Screening of lactobacilli with antagonistic activity against enteroinvasive Escherichia coli. Food Control 30 (2): 563–568.  https://doi.org/10.1016/j.foodcont.2012.09.002.CrossRefGoogle Scholar
  40. Llopis, M., A.M. Cassard, L. Wrzosek, L. Boschat, A. Bruneau, G. Ferrere, V. Puchois, J.C. Martin, P. Lepage, T. Le Roy, L. Lefevre, B. Langelier, F. Cailleux, A.M. Gonzalez-Castro, S. Rabot, F. Gaudin, H. Agostini, S. Prevot, D. Berrebi, D. Ciocan, C. Jousse, S. Naveau, P. Gerard, and G. Perlemuter. 2016. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 65 (5): 830–839.  https://doi.org/10.1136/gutjnl-2015-310585.CrossRefPubMedGoogle Scholar
  41. Maintz, L., and N. Novak. 2007. Histamine and histamine intolerance. American Journal of Clinical Nutrition 85 (5): 1185–1196.CrossRefGoogle Scholar
  42. Mandel, M. 1969. New approaches to bacterial taxonomy: Perspective and prospects. Annual Review of Microbiology 23 (1): 239.CrossRefGoogle Scholar
  43. Matthews, A., A. Grimaldi, M. Walker, E. Bartowsky, P. Grbin, and V. Jiranek. 2004. Lactic acid bacteria as a potential source of enzymes for use in vinification. Applied and Environmental Microbiology 70 (10): 5715–5731.  https://doi.org/10.1128/Aem.70.10.5715-5731.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Meriluoto, J., M. Gueimonde, C.A. Haskard, L. Spoof, O. Sjövall, and S. Salminen. 2005. Removal of the cyanobacterial toxin microcystin-LR by human probiotics. Toxicon 46 (1): 111–114.CrossRefGoogle Scholar
  45. Milth. 1884. Milth. a. d. kaiserl. Gesundh Amt 2: 309.Google Scholar
  46. Minot, Charles S. 1908. The prolongation of life. Optimistic studies. Nabu Press 31 (7407): 133.Google Scholar
  47. Monbaliu, Sofie, Christof Van Poucke, Christ’L Detavernier, Frédéric Dumoulin, Mario Van De Velde, Elke Schoeters, Stefaan Van Dyck, Olga Averkieva, Carlos Van Peteghem, and Sarah De Saeger. 2010. Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method. Journal of Agricultural and Food Chemistry 58 (1): 66–71.CrossRefGoogle Scholar
  48. Moro, E. 1900. Uber den Bacillus acidophilus n. sp. Jahrb Kinderheilk 52: 38–55.Google Scholar
  49. Mrvčić, J., T. Prebeg, L. Barišić, D. Stanzer, V. BačundružIna, and V. Stehliktomas. 2009. Zinc binding by lactic acid bacteria. Food Technology and Biotechnology 47 (4): 381–388.Google Scholar
  50. Ngundi, M.M., L.C. Shriver-Lake, M.H. Moore, M.E. Lassman, F.S. Ligler, and C.R. Taitt. 2005. Array biosensor for detection of ochratoxin a in cereals and beverages. Analytical Chemistry 77 (1): 148–154.CrossRefGoogle Scholar
  51. Oluwafemi, F., Manjula Kumar, Bandyopadhyay Ranajit, T. Ogunbanwo, and K.B. Ayanwande. 2010. Bio-detoxification of aflatoxin B1 in artificially contaminated maize grains using lactic acid bacteria. Toxin Reviews 29 (3–4): 115–122.CrossRefGoogle Scholar
  52. Orla-Jensen, S. 1909. Die Hauptlinien des natürlichen Bakteriensystems.Google Scholar
  53. ———. 1919. The lactic acid bacteria.Google Scholar
  54. Orlajensen, S., and Agnete Snogkjaer. 1940. Factors which promote or inhibit the development of lactic acid bacteria. Biol.skr.k.danske Vidensk.selsk 1: 5–19.Google Scholar
  55. Ouwehand, A.C., S. Salminen, T. Mattilasandholm, and M. Saarela. 2003. Safety evaluation of probiotics. Functional Dairy Products 10 (10): 316–336.CrossRefGoogle Scholar
  56. Pasteur. 1857. Mémoiresur la fermentation appeléelactique. Comptes Rendus Chimie 45: 913–916.Google Scholar
  57. Polakberecka, M., D. Szwajgier, and A. Waśko. 2014. Biosorption of Al(+3) and Cd(+2) by an exopolysaccharide from Lactobacillus rhamnosus. Journal of Food Science 79 (11): 2404–2408.CrossRefGoogle Scholar
  58. Pradeep, K., M.A. Kuttappa, and K.R. Prasana. 2014. Probiotics and oral health: An update. clinical Review 69 (1): 20–24.Google Scholar
  59. Rabie, Mohamed A., Hassan Siliha, Soher El-Saidy, Ahmed A. El-Badawy, and F. Xavier Malcata. 2011. Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chemistry 129 (4): 1778–1782.CrossRefGoogle Scholar
  60. Rogosa, M., R.P. Tittsler, and D.S. Geib. 1947. Correlation of vitamin requirements and cultural and biochemical characteristics of the genus Lactobacillus. Journal of Bacteriology 54 (1): 13.PubMedGoogle Scholar
  61. Sanders, M.E., F. Guarner, R. Guerrant, P.R. Holt, E.M.M. Quigley, R.B. Sartor, P.M. Sherman, and E.A. Mayer. 2013. An update on the use and investigation of probiotics in health and disease. Gut 62 (5): 787–796.  https://doi.org/10.1136/gutjnl-2012-302504.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Scheele, C.W. 1780. Om Mjölkochdesssyra, about milk and its acid. Kongliga Vetenskaps Academiens Nya Handlingar New Proceedings of the Royal Academy of Science 1: 116–124.Google Scholar
  63. Schieber, A.M.P., Y.M. Lee, M.W. Chang, M. Leblanc, B. Collins, M. Downes, R.M. Evans, and J.S. Ayres. 2015. Disease tolerance mediated by microbiome E-coli involves inflammasome and IGF-1 signaling. Science 350 (6260): 558–563.  https://doi.org/10.1126/science.aac6468.CrossRefGoogle Scholar
  64. Sezer, Çiğdem, Abamüslüm Güven, Nebahat Bilge Oral, and Leyla Vatansever. 2013. Detoxification of aflatoxin B1 by bacteriocins and bacteriocinogenic lactic acid bacteria. Turkish Journal of Veterinary and Animal Sciences 37 (5): 594–601.CrossRefGoogle Scholar
  65. Sharpe, M. Elisabeth. 1979. Lactic acid bacteria in the dairy industry. International Journal of Dairy Technology 32 (1): 9–18.CrossRefGoogle Scholar
  66. Sneath, P.H.A. 1957. The application of computers to taxonomy. Journal of General Microbiology 17 (1): 201.CrossRefGoogle Scholar
  67. Sofu, A., E. Sayilgan, and G. Guney. 2015. Experimental design for removal of Fe(II) and Zn(II) ions by different lactic acid bacteria biomasses. International Journal of Environmental Research 9 (1): 93–100.Google Scholar
  68. Stefanovic, E., G. Fitzgerald, and O. McAuliffe. 2017. Advances in the genomics and metabolomics of dairy lactobacilli: A review. Food Microbiology 61: 33–49.  https://doi.org/10.1016/j.fm.2016.08.009.CrossRefPubMedGoogle Scholar
  69. Ström, Katrin, Jörgen Sjögren, Anders Broberg, and Johan Schnürer. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides Cyclo(l-Phe-l-pro) and Cyclo(l-Phe-trans-4-OH-l-Pro) and 3-Phenyllactic acid. Applied and Environmental Microbiology 68 (9): 4322–4327.CrossRefGoogle Scholar
  70. Tian, F.W., Y. Xiao, X.X. Li, Q.X. Zhai, G. Wang, Q.X. Zhang, H. Zhang, and W. Chen. 2015. Protective effects of lactobacillus plantarum CCFM8246 against copper toxicity in mice. PLoS One 10 (11): e0143318. https://doi.org/ARTN e0143318711371/journal.pone.0143318.CrossRefGoogle Scholar
  71. Tissier. 1906. Traitement des infections intestinalespar la mthode de la transformation de la florebactrienne de lintestin. CR SocBiol 60: 359–361.Google Scholar
  72. Turnbaugh, P.J. 2012. Microbiology fat, bile and gut microbes. Nature 487 (7405): 47–48.  https://doi.org/10.1038/487047a.CrossRefPubMedGoogle Scholar
  73. Wang, H.C., B. Yang, G.F. Hao, Y. Feng, H.Q. Chen, L. Feng, J.X. Zhao, H. Zhang, Y.Q. Chen, L. Wang, and W. Chen. 2011. Biochemical characterization of the tetrahydrobiopterin synthesis pathway in the oleaginous fungus Mortierella alpina. Microbiology-Sgm 157: 3059–3070.  https://doi.org/10.1099/mic.0.051847-0.CrossRefGoogle Scholar
  74. Wang, G., J. Ning, J.C. Zhao, F. Hang, F.W. Tian, J.X. Zhao, Y.Q. Chen, H. Zhang, and W. Chen. 2014a. Partial characterisation of an anti-listeria substance produced by Pediococcus acidilactici P9. International Dairy Journal 34 (2): 275–279.  https://doi.org/10.1016/j.idairyj.2013.08.005.CrossRefGoogle Scholar
  75. Wang, G., Y. Zhao, F.W. Tian, X. Jin, H.Q. Chen, X.M. Liu, Q.X. Zhang, J.X. Zhao, Y.Q. Chen, H. Zhang, and W. Chen. 2014b. Screening of adhesive lactobacilli with antagonistic activity against Campylobacter jejuni. Food Control 44: 49–57.  https://doi.org/10.1016/j.foodcont.2014.03.042.CrossRefGoogle Scholar
  76. Wu, G.D., J. Chen, C. Hoffmann, K. Bittinger, Y.Y. Chen, S.A. Keilbaugh, M. Bewtra, D. Knights, W.A. Walters, R. Knight, R. Sinha, E. Gilroy, K. Gupta, R. Baldassano, L. Nessel, H.Z. Li, F.D. Bushman, and J.D. Lewis. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334 (6052): 105–108.  https://doi.org/10.1126/science.1208344.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Yoon, S., S.S. Han, and S.V. Rana. 2008. Molecular markers of heavy metal toxicity--a new paradigm for health risk assessment. Journal of Environmental Biology 29 (1): 1.PubMedGoogle Scholar
  78. Yu, L., Q. Zhai, X. Liu, G. Wang, Q. Zhang, J. Zhao, A. Narbad, H. Zhang, F. Tian, and W. Chen. 2016. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity. Applied Microbiology and Biotechnology 100 (4): 1891–1900.CrossRefGoogle Scholar
  79. Zamyadi, A., S.L. Macleod, Y. Fan, N. Mcquaid, S. Dorner, S. Sauvé, and M. Prévost. 2012. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: A monitoring and treatment challenge. Water Research 46 (5): 1511.CrossRefGoogle Scholar
  80. Zhai, Q., G. Wang, J. Zhao, X. Liu, F. Tian, H. Zhang, and W. Chen. 2013. Protective effects of Lactobacillus plantarum CCFM8610 against acute cadmium toxicity in mice. Applied and Environmental Microbiology 79 (5): 1508–1515.  https://doi.org/10.1128/AEM.03417-12.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Zhai, Q., G. Wang, J. Zhao, X. Liu, A. Narbad, Y.Q. Chen, H. Zhang, F. Tian, and W. Chen. 2014. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Applied and Environmental Microbiology 80 (13): 4063–4071.  https://doi.org/10.1128/AEM.00762-14.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zhai, Q., F. Tian, J. Zhao, H. Zhang, A. Narbad, and W. Chen. 2016. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Applied and Environmental Microbiology 82 (14): 4429–4440.  https://doi.org/10.1128/AEM.00695-16.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang, Qian, Zhang Juan, D.U. Guochengamp, and Jian Chen. 2012. Isolation and influencing factors of lactic acid bacteria with microcystin-LR degradation ability. Chinese Journal of Applied & Environmental Biology 18 (5): 745–751.CrossRefGoogle Scholar
  84. Zhang, Y., N. Qin, Y. Luo, and H. Shen. 2015. Effects of different concentrations of salt and sugar on biogenic amines and quality changes of carp (Cyprinus carpio) during chilled storage. Journal of the Science of Food and Agriculture 95 (6): 1157.CrossRefGoogle Scholar
  85. Zhao, J.X., X.J. Dai, X.M. Liu, H. Zhang, J.A. Tang, and W. Chen. 2011. Comparison of aroma compounds in naturally fermented and inoculated Chinese soybean pastes by GC-MS and GC-Olfactometry analysis. Food Control 22 (6): 1008–1013.  https://doi.org/10.1016/j.foodcont.2010.11.023.CrossRefGoogle Scholar
  86. Zhao, N., C.C. Zhang, Q. Yang, Z. Guo, B. Yang, W.W. Lu, D.Y. Li, F.W. Tian, X.M. Liu, H. Zhang, and W. Chen. 2016. Selection of taste markers related to lactic acid bacteria microflora metabolism for Chinese traditional Paocai: A gas chromatography-mass spectrometry-based metabolomics approach. Journal of Agricultural and Food Chemistry 64 (11): 2415–2422.  https://doi.org/10.1021/acs.jafc.5b05332.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Food Science and TechnologyJiangnan UniversityWuxiChina

Personalised recommendations