Advertisement

A Novel Method to Detect Fovea from Color Fundus Images

  • Samiksha Pachade
  • Prasanna Porwal
  • Manesh Kokare
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

The computer-aided diagnosis technology in retinal image analysis requires localization of different fundus structures. Efficient detection and localization of fovea are essential in the analysis of diabetic macular edema. This paper demonstrates a novel technique for detection of fovea from color fundus images based on image enhancement by adaptive manifold filter and further mathematical morphological operations for final foveal center localization. The major advantage of the proposed technique is that it does not need a spatial relationship of optic disc and vessels for the detection of fovea. It is robust to illumination changes and interference caused by retinal pathologies. Experiments show encouraging results that are analyzed on five publically available databases DRIVE, HEI-MED, DIARETDB1, HRF, and MESSIDOR with an accuracy of detection as 100%, 99.40%, 98.88%, 100%, and 98.66%, respectively. Comparative analysis of results indicates that the proposed method achieves better performance than other earlier methods present in the literature.

Keywords

Macula detection Fovea detection Retinal image analysis Diabetic macular edema 

References

  1. 1.
    Porwal, P., Pachade, S., Kokare, M., Deshmukh, G., Sahasrabuddhe, V.: Automatic retinal image analysis for the detection of diabetic retinopathy. Biomed. Signal Image Process. Patient Care 146 (2017)Google Scholar
  2. 2.
    Tobin, K.W., Chaum, E., Govindasamy, V.P., Karnowski, T.P.: Detection of anatomic structures in human retinal imagery. IEEE Trans. Med. Imaging 26(12), 1729–1739 (2007)CrossRefGoogle Scholar
  3. 3.
    Sagar, A.V., Balasubramanian, S., Chandrasekaran, V.: Automatic detection of anatomical structures in digital fundus retinal images. In: MVA, pp. 483–486 (2007)Google Scholar
  4. 4.
    Niemeijer, M., Abramoff, M.D., Van Ginneken, B.: Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans. Med. Imaging 26(1), 116–127 (2007)CrossRefGoogle Scholar
  5. 5.
    Welfer, D., Scharcanski, J., Marinho, D.R.: Fovea center detection based on the retina anatomy and mathematical morphology. Comput. Methods Program. Biomed. 104(3), 397–409 (2011)CrossRefGoogle Scholar
  6. 6.
    Chin, K.S., Trucco, E., Tan, L., Wilson, P.J.: Automatic fovea location in retinal images using anatomical priors and vessel density. Pattern Recogn. Lett. 34(10), 1152–1158 (2013)CrossRefGoogle Scholar
  7. 7.
    Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Automated detection of exudates and macula for grading of diabetic macular edema. Comput. Methods Program. Biomed. 114(2), 141–152 (2014)CrossRefGoogle Scholar
  8. 8.
    Aquino, A.: Establishing the macular grading grid by means of fovea centre detection using anatomical-based and visual-based features. Comput. Biol. Med. 55, 61–73 (2014)CrossRefGoogle Scholar
  9. 9.
    Kao, E.F., Lin, P.C., Chou, M.C., Jaw, T.S., Liu, G.C.: Automated detection of fovea in fundus images based on vessel-free zone and adaptive gaussian template. Comput. Methods Program. Biomed. 117(2), 92–103 (2014)CrossRefGoogle Scholar
  10. 10.
    Medhi, J.P., Dandapat, S.: An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images. Comput. Biol. Med. 74, 30–44 (2016)CrossRefGoogle Scholar
  11. 11.
    Molina-Casado, J.M., Carmona, E.J., García-Feijoó, J.: Fast detection of the main anatomical structures in digital retinal images based on intra-and inter-structure relational knowledge. Comput. Methods Program. Biomed. (2017)Google Scholar
  12. 12.
    Tan, J.H., Acharya, U.R., Bhandary, S.V., Chua, K.C., Sivaprasad, S.: Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci. 20, 70–79 (2017)Google Scholar
  13. 13.
    Gastal, E.S., Oliveira, M.M.: Adaptive manifolds for real-time high-dimensional filtering. ACM Trans. Graph. (TOG) 31(4), 33 (2012)CrossRefGoogle Scholar
  14. 14.
    Staal, J., Abramoff, M., Niemeijer, M., Viergever, M., van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  15. 15.
    Giancardo, L., Meriaudeau, F., Karnowski, T.P., Li, Y., Garg, S., Tobin, K.W., Chaum, E.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 16(1), 216–226 (2012)CrossRefGoogle Scholar
  16. 16.
    Kauppi, T., Kamarainen, J.K., Lensu, L., Kalesnykiene, V., Sorri, I., Uusitalo, H., Kälviäinen, H.: A framework for constructing benchmark databases and protocols for retinopathy in medical image analysis. In: International Conference on Intelligent Science and Intelligent Data Engineering, pp. 832–843. Springer (2012)Google Scholar
  17. 17.
    Khler, T., Budai, A., Kraus, M.F., Odstrilik, J., Michelson, G., Hornegger, J.: Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp. 95–100 (2013)Google Scholar
  18. 18.
    Decencière, E., Zhang, X., Cazuguel, G., Laÿ, B., Cochener, B., Trone, C., Gain, P., Ordóñez-Varela, J.R., Massin, P., Erginay, A., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereol. 33(3), 231–234 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Samiksha Pachade
    • 1
  • Prasanna Porwal
    • 1
  • Manesh Kokare
    • 1
  1. 1.Center of Excellence in Signal and Image Processing, Shri Guru Gobind Singhji Institute of Engineering and TechnologyNandedIndia

Personalised recommendations