Advertisement

EEG Waveform Classification Using Transform Domain Features and SVM

  • Hemprasad Y. Patil
  • Priyanka B. Patil
  • Seema R. Baji
  • Rohini S. Darade
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

Electroencephalogram (EEG) waveforms are fluctuations in brain-recorded utilizing anodes set on the scalp. Albeit a few strategies for the evaluation of working of brain, for example, MEG, PET, CT scan, and MRI have been presented, the EEG waveform is as yet an important biological signal for checking the brain signal variations because of its moderately ease and being helpful for the patient. We have presented an approach to classify the EEG waveforms into two classes, viz. epileptic and normal. The algorithm fuses the features extracted using discrete wavelet transform, discrete cosine transform, and stationary wavelet transform. The fused features are subjected to support vector machine (SVM) classifier.

Keywords

EEG signals DWT DCT SVM SWT Machine learning 

References

  1. 1.
    Amin, H., Malik, A., Ahmad, R., Badruddin, N., Kamel, N., Hussain, M., Chooi, W.: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas. Phys. Eng. Sci. Med. 38(1), 139–149 (2015)CrossRefGoogle Scholar
  2. 2.
    Hamad, A., Houssein, E., Hassanien, A., Fahmy, A.: Feature extraction of epilepsy EEG using discrete wavelet transform. In: 12th International Computer Engineering Conference (ICENCO), pp. 190–195. IEEE, Cairo (2016)Google Scholar
  3. 3.
    Satapathy, S., Dehuri, S., Jagadev, A.: ABC optimized RBF network for classification of EEG signal for epileptic seizure identification. Egypt. Inform. J. 18(1), 55–66 (2017)CrossRefGoogle Scholar
  4. 4.
    Ma, Y., Ding, X., She, Q., Luo, Z., Potter T., Zhang, Y.: Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Comput. Math. Methods Med. (2016)Google Scholar
  5. 5.
    Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)CrossRefGoogle Scholar
  6. 6.
    Guo, L., Rivero, D., Dorado, J., Munteanu, C., Pazos, A.: Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38(8), 10425–10436 (2011)CrossRefGoogle Scholar
  7. 7.
    Jahankhani, P., Kodogiannis, V., Revett, K.: The EEG symposium on modern computing signal and classification using the wavelet feature extraction and neural networks. In: John Vincent Atanasoff 2006 International Symposium on Modern Computing (JVA’06), pp. 120–124. IEEE, Bulgaria (2006)Google Scholar
  8. 8.
    Hafed, Z., Levine, M.: Face recognition using the discrete cosine transform. Int. J. Comput. Vis. 43(3), 167–188 (2001)CrossRefGoogle Scholar
  9. 9.
    Ahmed, N., Natarajan, T., Rao, K.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Grzeszczak, A., Mandal, M., Panchanathan, S.: VLSI implementation of discrete wavelet transform. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 4(4), 421–433 (1996)CrossRefGoogle Scholar
  11. 11.
    Wang, X., Istepanian, R., Song, Y.: Microarray image enhancement by denoising using stationary wavelet transform. IEEE Trans. Nanobiosci. 2(4), 184–189 (2003)CrossRefGoogle Scholar
  12. 12.
    Andrzejak, R., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64(6), 0619071–0619078 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hemprasad Y. Patil
    • 1
  • Priyanka B. Patil
    • 2
  • Seema R. Baji
    • 3
  • Rohini S. Darade
    • 3
  1. 1.R. H. Sapat College of Engineering, Management Studies and ResearchNashikIndia
  2. 2.Sir Dr. M. S. Gosavi Polytechnic InstituteNashik Road, NashikIndia
  3. 3.Late G. N. Sapkal College of EngineeringNashikIndia

Personalised recommendations