Advertisement

Design Optimization of 10 nm Channel Length InGaAs Vertical Gate-All-Around Transistor (Nanowire)

  • Shreyas Kulkarni
  • Sangeeta Joshi
  • Dattatray Bade
  • Subha Subramaniam
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

This paper proposes a cylindrical vertical Gate-All-Around Transistor with nanowire of compound III-V semiconductor material In0.53Ga0.47As n-type device with channel length of 10 nm. The effect of variation of channel diameter and spacer length on the performance of the device is simulated. The device gives an acceptable Subthreshold Slope and Drain Induced Barrier Lowering along with satisfactory ION/IOFF ratio. The device is simulated in Sentaurus Synopsys using Hydrodynamic model for III-V semiconductors with Poisson equation to give the transfer characteristics.

Keywords

Vertical Gate-All-Around (VGAA) InGaAs Nanowire Synopsys Sentaurus TCAD 

Notes

Acknowledgements

The authors would like to thank Indian Nanoelectronics Users Program (INUP), IIT-B for accepting our project and helping us in the same.

References

  1. 1.
    Moore, G.E.: Progress in digital integrated electronics. In: Electron Devices Meeting, vol. 21, pp. 11–13 (1975)Google Scholar
  2. 2.
    Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press (2013)Google Scholar
  3. 3.
    Guo, J., Lundstrom, M., Datta, S.: Performance projections for ballistic carbon nanotube field-effect transistors. Appl. Phys. Lett. 80(17), 3192–3194 (2002)CrossRefGoogle Scholar
  4. 4.
    Wang, J., Polizzi, E., Lundstrom, M.: A computational study of ballistic silicon nanowire transistors. In: IEEE International Electron Devices Meeting, 2003. IEDM’03 Technical Digest, pp. 29–5. IEEE (2003)Google Scholar
  5. 5.
    Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)CrossRefGoogle Scholar
  6. 6.
    Guerfi, Y., Larrieu, G.: Vertical silicon nanowire field effect transistors with nanoscale gate-all-around. Nanoscale Res. Lett. 11(1), 210 (2016)Google Scholar
  7. 7.
    Jena, B., et al.: Conical surrounding gate MOSFET: a possibility in gate-all-around family. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7(1), 015009 (2016)Google Scholar
  8. 8.
    ITRS 2.0 Executive Report 2015 EditionGoogle Scholar
  9. 9.
    Becker, J.A., Shive, J.N.: The transistor—a new semiconductor amplifier. Electr. Eng. 68(3), 215–221 (1949)CrossRefGoogle Scholar
  10. 10.
    Doyle, B.S., Datta, S., Doczy, M., Hareland, S., Jin, B., Kavalieros, J., Chau, R.: High performance fully-depleted tri-gate CMOS transistors. IEEE Electron Device Lett. 24(4), 263–265 (2003)CrossRefGoogle Scholar
  11. 11.
    Riel, H., Wernersson, L.-E., Hong, M., del Alamo, J.A.: III-V compound semiconductor transistors from planar to nanowire structures. MRS Bull. 39(08), 668–677 (2014). Materials Research Society, Aug 2014Google Scholar
  12. 12.
    Subramaniam, Subha, Joshi, Sangeeta M., Awale, R.N.: Analytical modeling and numerical simulation of novel double-gate InGaAs vertical nanowire transistor device for threshold voltage tuning and improved performance. Eng. Sci. Technol. Int. J. 19(4), 1857–1863 (2016)CrossRefGoogle Scholar
  13. 13.
    Moore, G.E.: Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114. IEEE Solid-State Circuits Soc. Newsl. 20(3), 33–35 (2006)Google Scholar
  14. 14.
    Del Alamo, J.A., et al.: Nanometer-scale III-V MOSFETs. IEEE J. Electron Devices Soc. 4(5), 205–214 (2016)CrossRefGoogle Scholar
  15. 15.
    Lin, J., et al.: Record maximum transconductance of 3.45 mS/m for III-V FETs. IEEE Electron Device Lett. 37(4), 381–384 (2016)CrossRefGoogle Scholar
  16. 16.
    Larrieu, G., Guerfi, Y., Han, X.L., Clment, N.: Sub-15 nm gate-all-around field effect transistors on vertical silicon nanowires. Solid-State Electron. (2017)Google Scholar
  17. 17.
    Zhao, et. al.: Vertical nanowire InGaAs MOSFETs fabricated by a top-down approach. In: IEDM 2013Google Scholar
  18. 18.
    Zhou, X., Li, Q., Tang, C.W., Lau, K.M.: Inverted-type InGaAs metal-oxide-semiconductor high-electron-mobility transistor on Si substrate with maximum drain current exceeding 2 A/mm. Appl. Phys. Express 5(10), 104201 (2012)CrossRefGoogle Scholar
  19. 19.
    Sentaurus Device User Guide, Synopsys (2011)Google Scholar
  20. 20.
    Sentaurus Structure Editor User Guide, Synopsys (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shreyas Kulkarni
    • 1
  • Sangeeta Joshi
    • 1
  • Dattatray Bade
    • 1
  • Subha Subramaniam
    • 2
  1. 1.Vidyalankar Institute of TechnologyMumbaiIndia
  2. 2.Shah and Anchor Kutchhi Engineering CollegeMumbaiIndia

Personalised recommendations