MHD Stagnation-Point Dissipative Flow in a Porous Medium with Joule Heating and Second-Order Slip

  • S. R. Sayyed
  • B. B. SinghEmail author
  • Nasreen Bano
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)


The present paper deals with the MHD stagnation-point dissipative flow in a porous medium over a flat plate with variable wall temperature. The effects of viscous dissipation, Joule heating, and second-order slip on the flow field have been studied both numerically and graphically for several values of governing parameters. The physical model of the problem is governed by coupled partial differential equations reducible to a set of coupled nonlinear ordinary differential equations (ODEs) using similarity transformations. The system of the coupled nonlinear ODEs has been solved analytically using optimal homotopy analysis method (OHAM). The results obtained in the present analysis have been compared with the results available in the literature, and have been found in excellent agreement.


  1. 1.
    Hiemenz, K.: Die Grenszchicht an einem in den gleichförmingen Flussigkeitsstorm eingetauchen geraden Kreiszylinder. Dinglers Polytech J. 326, 321–324 (1911)Google Scholar
  2. 2.
    Eckert, E.R.G.: Die berechnung des wärmeübergangs in der laminaren grenzschicht umströmter körper VDI Forschungsheft, Berlin (1942)Google Scholar
  3. 3.
    Beard, D.W., Waltersm, K.: Elastico-viscous boundary-layer flows. I. Two dimensional flow near a stagnation point. Math. Proc. Cambr. Philos. Soc. 60(3), 667–674 (1964). Scholar
  4. 4.
    Nield, D.A., Bejan, A.: Convection in Porous Media. Springer, New York (2006)zbMATHGoogle Scholar
  5. 5.
    Yih, K.A.: The effect of uniform suction/blowing on heat transfer of magnetohydrodynamic Hiemenz flow through porous media. Acta Mech. 130(3–4), 147–158 (1998)CrossRefGoogle Scholar
  6. 6.
    Raptis, A.A., Takhar, H.S.: Flow through a porous medium. Mech. Res. Commun. 14(5–6), 327–329 (1987). Scholar
  7. 7.
    Kechil, S.A., Hashim, I.: Approximate analytical solution for MHD stagnation-point flow in porous media. Commun. Nonlinear Sci. Numer. Simul. 14(4), 1346–1354 (2009). Scholar
  8. 8.
    Bhatti, M.M., Abbas, T., Rashidi, M.M.: A new numerical simulation of MHD stagnation-point flow over a permeable stretching/shrinking sheet in porous media with heat transfer. Iran. J. Sci. Technol. Trans. A: Sci. 1–7 (2016). Scholar
  9. 9.
    Kudenatti, R.B., Kirsur, S.R., Nargund, A.L., Bujurke, N.M.: Similarity solutions of the MHD boundary layer flow past a constant wedge within porous media. Math. Probl. Eng. 2017, 1–11 (2017). Scholar
  10. 10.
    Khan, M.I., Hayat, T., Khan, M.I., Alsaedi, A.: A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating. Int. J. Heat Mass Transf. 113, 310–317 (2017)CrossRefGoogle Scholar
  11. 11.
    Wu, L.: A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 93, 253103 (2008). Scholar
  12. 12.
    Fang, T., Yao, S., Zhang, J., Aziz, A.: Viscous flow over a shrinking sheet with a second order slip flow model. Commun. Nonlinear Sci. Numer. Simul. 15, 1831–1842 (2010). Scholar
  13. 13.
    Rahman, M.M.: Effects of second-order slip and magnetic field on mixed convection stagnation-point flow of a Maxwellian fluid: multiple solutions. J. Heat Transf. 138, 122503-1 (2016). Scholar
  14. 14.
    Zhao, Y., Liao, S.: HAM-based package BVPh 2.0 for nonlinear boundary value problems. In: Liao, S. (ed.) Advances in Homotopy Analysis Method. World Scientific Press (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsDr. Babasaheb Ambedkar Technological UniversityLonere, RaigadIndia

Personalised recommendations