Advertisement

Feature Ensemble Learning Based on Sparse Autoencoders for Diagnosis of Parkinson’s Disease

  • Vinod J. Kadam
  • Shivajirao M. Jadhav
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

Parkinson’s disease detection through proper representation of the vocal and speech datasets remains an important classification problem. For this problem, we proposed a feature ensemble learning method based on sparse autoencoders. The dataset for this purpose was obtained from UCI, an online repository of comprehensive datasets. Some simulations were conducted over the UCI dataset to confirm the effectiveness of the proposed model. In this paper, the outcomes of the experimentation are compared with the outcomes of stacked sparse Autoencoders and softmax classifier based deep neural network and many classification techniques. Our proposed method yields superior results than DNN. With the proposed model, we obtained a true promising accuracy more than 90%. The outcome of the study also proves that the Feature ensemble learning based on sparse autoencoders method is comparable to other methods present in the literature. The experimental results and statistical analyses are pointing out that the proposed classifier is really useful and practical model for Parkinson’s disease investigation.

Keywords

Parkinson’s disease Stacked sparse autoencoders Softmax classifier Ensemble learning 

References

  1. 1.
    Parkinson, J.: An essay on the shaking palsy. J. Neuropsychiatry Clin. Neurosci. 14(2), 223–236 (2002). Published online: May 01CrossRefGoogle Scholar
  2. 2.
    Langston, J.W.: Parkinson’s disease: current and future challenges. Neurotoxicology, (4-5), pp. 443–450, 23 Oct 2002.  https://doi.org/10.1016/S0161-813X(02)00098-0CrossRefGoogle Scholar
  3. 3.
    Meissner, W.G., Frasier, M., Gasser, T., Goetz, C.G., Lozano, A., Paola Piccini, J.A., Obeso, O.R., Schapira, A., Voon, V., Weiner, David M., Tison, F., Bezard, E.: Priorities in Parkinson’s disease research. Nature Rev. Drug Discov. 10(377), 393 (2011)Google Scholar
  4. 4.
    Gallagher, D.A., Lees, A.J., Schrag, A.: What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov. Disord. 25(2493), 2500 (2010).  https://doi.org/10.1002/mds.23394CrossRefGoogle Scholar
  5. 5.
    American Parkinson Disease Association (APDA), Symptoms of Parkinson’s disease. https://www.apdaparkinson.org/what-is-parkinsons/symptoms/ (2017). Accessed 21 Nov 2017
  6. 6.
    Mittel, C.S.: Parkinson’s Disease, Overview and Current Abstracts, 1st edn. Nova Science Publishers. Inc., New York, USA (2003)Google Scholar
  7. 7.
    Schley, W.S., Fenton, E., Niimi, S.: Vocal symptoms in parkinson disease treated with levodopa: a case report. Ann. Otol. Rhinol. Laryngol. 91(1), 119–121 (1982)CrossRefGoogle Scholar
  8. 8.
    Little, M.A., McSharry, P.E., Hunter, E.J., Spielman, J., Ramig, L.O.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56(4), 1015–1022 (2009).  https://doi.org/10.1109/TBME.2008.2005954CrossRefGoogle Scholar
  9. 9.
    Shahbaba, B., Neal, R.: Nonlinear models using dirichlet process mixtures. J. Mach. Learn. Res. 10, 1829–1850 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Psorakis, I., Damoulas, T., Girolami, M.A.: Multiclass relevance vector machines: sparsity and accuracy. IEEE Trans. Neural Netw. 21(10), 1588–1598 (2010)CrossRefGoogle Scholar
  11. 11.
    Guo, P.-F., Bhattacharya, P., Kharma, N.: Advances in detecting Parkinsons disease. In: Zhang, D., Sonka, M. (eds.) Medical Biometrics. ICMB 2010. Lecture Notes in Computer Science, vol. 6165. Springer, Berlin, Heidelberg (2010)Google Scholar
  12. 12.
    Okan Sakar, C., Kursun, O.: Telediagnosis of parkinson’s disease using measurements of dysphonia, J. Med. Syst. 34(4), 591–599 (2010)CrossRefGoogle Scholar
  13. 13.
    Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37, 1568–1572 (2010)CrossRefGoogle Scholar
  14. 14.
    Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38, 4600–4607 (2011).  https://doi.org/10.1016/j.eswa.2010.09.133CrossRefGoogle Scholar
  15. 15.
    Ozcift, A., Gulten, A.: Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput. Methods Programs Biomed. 104(3), 443–451 (2011).  https://doi.org/10.1016/j.cmpb.2011.03.018. Epub 30 Apr 2011CrossRefGoogle Scholar
  16. 16.
    Li, D.-C., Liu, C.-W., Hu, S.C.: A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif. Intell. Med. 52, 45–52 (2011)CrossRefGoogle Scholar
  17. 17.
    Åström, F., Koker, R.: A parallel neural network approach to prediction of Parkinson’s Disease. Expert Syst. Appl. 38(10), 12470–12474 (2011)CrossRefGoogle Scholar
  18. 18.
    Spadoto, A.A., Guido, R.C., Carnevali, F.L., Pagnin, A.F., Falcao, A.X., Papa, J.P.: Improving Parkinson’s disease identification through evolutionary-based feature selection. In: Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC ’11), pp. 7857–7860, Boston, Massachusetts, USA (2011)Google Scholar
  19. 19.
    Polat, K.: Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering. Int. J. Syst. Sci. 43(4), 597–609 (2012).  https://doi.org/10.1080/00207721.2011.581395MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Daliri, M.R.: Chi-square distance kernel of the gaits for the diagnosis of Parkinson’s disease. Biomed. Signal Process. Control 8, 66–70 (2013)CrossRefGoogle Scholar
  21. 21.
    Chen, H.-L., Huang, C.-C., Yu, X.-G., Xu, X., Sun, X., Wang, G., Wang, S.-J.: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40, 263–271 (2013)CrossRefGoogle Scholar
  22. 22.
    Zuo, W.-L., Wang, Z.-Y., Liu, T., Chen, H.-L.: Effective detection of Parkinson’s disease using an adaptive fuzzy k-nearest neighbor approach. Biomed. Signal Process. Control 8(4), 364–373 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y.N.: Can a smartphone diagnose Parkinson disease? In: A Deep Neural Network Method and Telediagnosis System Implementation, Parkinsons Disease, vol. 2017, Article ID 6209703, 11 pp (2017).  https://doi.org/10.1155/2017/6209703Google Scholar
  24. 24.
    Lu, Y., Zhang, L., Wang, B., Yang, J.: Feature ensemble learning based on sparse autoencoders for image classification. In: 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, pp. 1739–1745 (2014).  https://doi.org/10.1109/IJCNN.2014.6889415
  25. 25.
    Lichman, M.: UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. http://archive.ics.uci.edu/ml (2013). Accessed 20 Nov 2017
  26. 26.
    Andrew, N.G.: CS294A Lecture Notes Sparse Autoencoder, p. 72 (2011). https://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
  27. 27.
    Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms, p. 544. Wiley (2004)Google Scholar
  28. 28.
    Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20, 3, 226–239 (1998).  https://doi.org/10.1109/34.667881CrossRefGoogle Scholar
  29. 29.
    Little, M.A., McSharry, P.E., Roberts, S.J., Costello, D.A.E., Moroz, I.M.: Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. Biomed. Eng. OnLine 6, 23 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ITBabasaheb Ambedkar Technological UniversityLonere, RaigadIndia

Personalised recommendations