Advertisement

Design of Spoof Surface Plasmon Polaritons Based Transmission Line at Terahertz Frequency

  • Rahul Kumar Jaiswal
  • Nidhi Pandit
  • Nagendra Prasad Pathak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 810)

Abstract

In this paper, we report a plasmonic metamaterial, i.e., spoof surface plasmon polaritons based back to back broadband transition at terahertz frequency. Also we have designed another structure using a unit cell that is made up of by combining three SSPP strip together. This structure shows a way to realize stopband within the operating frequency of spoof surface plasmon polaritons. Using the new type of unit cell disturbs the surface impedance matching and thus gives band stop in the transmission spectrum of SSPP. The first design of transition has reflection coefficient less than −10 dB and transmission loss is less than 5 dB in 0.1–0.8 THz range of frequency. The second designed structure shows strop band from 0.569 to 0.6124 THz and band pass is maintained from 0.1 to 0.569 THz and from 0.6124 to 0.6516 THz. Reflection coefficients in the band-pass region is less than −10 dB and transmission loss is less than 8 dB while in the band stop region reflection coefficient is −3 dB and transmission coefficient is −24 dB has been obtained. Such type structures will show promising application in plasmonic device and systems.

Keywords

Terahertz Spoof surface plasmon polaritons (SSPP) Plasmonic metamaterial Dispersion Band pass Band stop 

References

  1. 1.
    Zayats, A.V., Smolyaninov, I.I., Maradudin, A.A.: Nano-optics of surface palsmon polaritons. Phys. Rep. 408, 131–314 (2005)Google Scholar
  2. 2.
    Maier, S.A.: Plasmonics: Fundamentals and Applications. Springer Verlag, USA, New York, NY (2007)CrossRefGoogle Scholar
  3. 3.
    Atwater, H.A.: The promise of plasmonics. Sci. Am. 296, 56–62 (2007)CrossRefGoogle Scholar
  4. 4.
    Web, S.I., This, S., Press, H., York, N., Nw, A.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Sci. Rev. 311, 189–194 (2006)Google Scholar
  5. 5.
    Pitarke, J.M., Silkin, V.M., Chulkov, E.V., Echenique, P.M.: Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 1 (2006)Google Scholar
  6. 6.
    Rusina, A., Durach, M., Stockman, M.I.: Theory of spoof plasmons in real metals. Appl. Phys. A Mater. Sci. Process. 100, 375–378 (2010)CrossRefGoogle Scholar
  7. 7.
    Liu, H., Wang, B., Ke, L., Deng, J., Chum, C.C., Teo, S.L., Shen, L., Maier, S.A., Teng, J.: High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett. 12, 1549–1554 (2012)CrossRefGoogle Scholar
  8. 8.
    Wang, B., Zhang, X., Yuan, X., Teng, J.: Optical coupling of surface plasmons between graphene sheets. Appl. Phys. Lett. 100 (2012)CrossRefGoogle Scholar
  9. 9.
    Atwater, H., Polman, A., Kosten, E., Callahan, D., Spinelli, P., Eisler, C., Escarra, M., Warmann, E., Flowers, C.: Nanophotonic design principles for ultrahigh efficiency photovoltaics. AIP Conf. Proc. 1519, 17–21 (2013)CrossRefGoogle Scholar
  10. 10.
    Schmidt, M.A., Lei, D.Y., Wondraczek, L., Nazabal, V., Maier, S.A.: Hybrid nanoparticle-microcavity-based plasmonic nanosensors with improved detection resolution and extended remote-sensing ability. Nat. Commun. 3 (2012)Google Scholar
  11. 11.
    Zhang, S., Xiong, Y., Bartal, G., Yin, X., Zhang, X.: Magnetized plasma for reconfigurable subdiffraction imaging. Phys. Rev. Lett. 106, 1–4 (2011)Google Scholar
  12. 12.
    Jones, A.C., Olmon, R.L., Skrabalak, S.E., Wiley, B.J., Xia, Y.N., Raschke, M.B.: Mid-IR polasmonics: Near-field imaging of coherent plasmon modes of silver nanowires. Nano Lett. 9 (2009)CrossRefGoogle Scholar
  13. 13.
    Anker, J.N., Hall, W.P., Lyandres, O., Shah, N.C., Zhao, J., Van Duyne, R.P.: Biosensing with plasmonic nanosensors. Nat. Material. 7, 442–453 (2008)CrossRefGoogle Scholar
  14. 14.
    Pendry, J.B., Martin-Moreno, L., Garcia-Vidal, F.J.: Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004)CrossRefGoogle Scholar
  15. 15.
    Hibbins, A.P., Evans, B.R., Sambles, J.R.: Experimental verification of designer surface plasmons. Sci. Mag. 308 (2005)CrossRefGoogle Scholar
  16. 16.
    Zhang, W., Zhu, G., Sun, L., Lin, F.: Trapping of surface plasmon wave through gradient corrugated strip with underlayer ground and manipulating its propagation: J. App. Phys. 106 (2015)CrossRefGoogle Scholar
  17. 17.
    Ma, H.F., Shen, X., Cheng, Q., Jiang, W.X., Cui, T.J.: Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons. Laser Photonics Rev. 8, 146–151 (2014)CrossRefGoogle Scholar
  18. 18.
    Kianinejad, A., Chen, Z.N., Qiu, C.-W.: Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans. Microwave Theory Tech. 63, 1817–1825 (2015)CrossRefGoogle Scholar
  19. 19.
    Liu, X., Zhu, L., Wu, Q., Feng, Y.: Highly-Confined and Low-Loss Spoof Surface Plasmon Polaritons Structure with Periodic Loading of Trapezoidal Grooves, vol. 5. AIP Advances. (2015)Google Scholar
  20. 20.
    Gao, X., Shi, J.H., Shen, X., Ma, H.F., Jiang, W.X., Li, L., Cui, T.J.: Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl. Phys. Lett. 102, 9–13 (2013)CrossRefGoogle Scholar
  21. 21.
    Jaiswal, R.K., Pathak, N.P.: Spoof surface plasmons polaritons based multi-band band pass filter. IEEE APMC Conference (2016) (in press)Google Scholar
  22. 22.
    Jaiswal, R.K., Pathak, N.P.: Development and design of multi-band bandpass filter based on the concept of spoof surface plasmon polaritons. In: IEEE ICIIS Conference (2016) (in press)Google Scholar
  23. 23.
    Jaiswal, R.K., Pandit, N,. Pathak, N.P.: A broadband transition device and multiband band-pass filter using ring resonator based on spoof surface plasmon polaritons at microwavefrequency. IEEE IMarc (2017) (in press)Google Scholar
  24. 24.
    Jaiswal, R.K., Pandit, N., Pathak, N.P.: Design of Multiple Band-Notch Ring Resonator Filter Based on Plasmonic Metamaterial at Microwave Frequency. IEEE iAim, Nov (2017) (in press)Google Scholar
  25. 25.
    Jaiswal, R.K., Pandit, N., Pathak, N.P.: Design, Analysis and Characterization of Designer Surface Plasmon Polaritons—Based Dual Band Antenna. Springer Plasmonics (2017).  https://doi.org/10.1007/s11468-017-0622-1CrossRefGoogle Scholar
  26. 26.
    Liu, N., Wen, F., Zhao, Y., Wang, Y., Nordlander, P., Halas, N.J., Alu, A.: Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 13, 142–147 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rahul Kumar Jaiswal
    • 1
  • Nidhi Pandit
    • 1
  • Nagendra Prasad Pathak
    • 1
  1. 1.Radio Frequency Integrated Circuits and System Laboratory, Department of Electronics and Communication EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations