Advertisement

Nanomaterials: Diagnosis and Therapeutic Properties

  • Suvani Subhadarshini
  • Neha Merchant
  • Ganji Seeta Rama RajuEmail author
Chapter

Abstract

Therapeutic strategies toward the treatment of gastrointestinal (GI) malignancies frequently involve the administration of increased dosage of chemotherapeutic drugs, often resulting in nonspecific toxicities. Although conventional radio- and chemotherapy have been the gold standard of cancer therapy for decades, these approaches are not optimal and can lead to resistance to these and other therapies. Effectiveness of GI malignancy therapies depends on fine-tuning of eradication of cancer cells with minimal or ideally no toxic effect on normal cells. Nanomaterials (NMs) offer a solution for targeted killing of cancerous cells without causing damage to the healthy host cells. NMs are appealing drug carriers based on their high tissue permeability, high colloidal stability, small size in the nanometer range, high surface-to-volume ratio (large amount of drug can be loaded), aqueous solubility, ease of characterization, and surface modification. The enhanced permeability and retention (EPR) effect of NMs permit accumulation at the tumor site. Apart from the passive accumulation of nanoparticles at tumor sites, NMs actively delivered the drug at tumor sites by loading with various growth factor receptors, peptides, shRNA, and small molecules. In this chapter, we will discuss the impact of NMs on tyrosine kinases associated with growth and metastasis of selected GI malignancies.

Keywords

Gastrointestinal malignancies Nanomaterials Nanoparticles Tyrosine kinase 

References

  1. 1.
    Murty B, Shankar P, Raj B, Rath B, Murday J (2013) Textbook of nanoscience and nanotechnology. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Reddy LH, Sharma R, Murthy R (2004) Enhanced tumour uptake of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles in mice bearing Dalton’s lymphoma tumour. J Drug Target 12:443–451CrossRefGoogle Scholar
  3. 3.
    Reddy LH, Murthy R (2004) Pharmacokinetics and biodistribution studies of doxorubicin loaded poly (butyl cyanoacrylate) nanoparticles synthesized by two different techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 148:161–166CrossRefGoogle Scholar
  4. 4.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392PubMedGoogle Scholar
  5. 5.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284CrossRefGoogle Scholar
  6. 6.
    Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  7. 7.
    Tkachenko AG, Xie H, Coleman D, Glomm W, Ryan J, Anderson MF, Franzen S, Feldheim DL (2003) Multifunctional gold nanoparticle− peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701CrossRefGoogle Scholar
  8. 8.
    Sarkar S, Konar S, Prasad PN, Rajput S, Kumar BP, Rao RR, Pathak A, Fisher PB, Mandal M (2017) Micellear gold nanoparticles as delivery vehicles for dual tyrosine kinase inhibitor ZD6474 for metastatic breast cancer treatment. Langmuir 33:7649–7659CrossRefGoogle Scholar
  9. 9.
    Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654CrossRefGoogle Scholar
  10. 10.
    Menon JU, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen KT (2013) Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 3:152CrossRefGoogle Scholar
  11. 11.
    Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 9:1225–1243CrossRefGoogle Scholar
  12. 12.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  13. 13.
    Goring R, Goldman A, Kaufman K, Roberts C, Quesenberry K, Kollias G (1986) Needle catheter duodenostomy: a technique for duodenal alimentation of birds. J Am Vet Med Assoc 189:1017–1019PubMedGoogle Scholar
  14. 14.
    Torres-Lugo M, Rinaldi C (2013) Thermal potentiation of chemotherapy by magnetic nanoparticles. Nanomedicine 8:1689–1707CrossRefGoogle Scholar
  15. 15.
    Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ (2016) Hyperthermia: how can it be used? Oman Med J 31:89CrossRefGoogle Scholar
  16. 16.
    Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41:147–162CrossRefGoogle Scholar
  17. 17.
    Moore CM, Pendse D, Emberton M (2009) Photodynamic therapy for prostate cancer—a review of current status and future promise. Nat Rev Urol 6:18CrossRefGoogle Scholar
  18. 18.
    Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56CrossRefGoogle Scholar
  19. 19.
    Zhou Z, Zhang C, Qian Q, Ma J, Huang P, Pan L, Gao G, Fu H, Fu S, Song H (2013) Folic acid-conjugated silica capped gold nanoclusters for targeted fluorescence/X-ray computed tomography imaging. J Nanobiotechnol 11:17CrossRefGoogle Scholar
  20. 20.
    Li Y, Gobin AM, Dryden GW, Kang X, Xiao D, Li SP, Zhang G, Martin RC (2013) Infrared light-absorbing gold/gold sulfide nanoparticles induce cell death in esophageal adenocarcinoma. Int J Nanomedicine 8:2153PubMedPubMedCentralGoogle Scholar
  21. 21.
    Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132:4678–4684CrossRefGoogle Scholar
  22. 22.
    Chanda N, Shukla R, Katti KV, Kannan R (2009) Gastrin releasing protein receptor specific gold nanorods: breast and prostate tumor avid nanovectors for molecular imaging. Nano Lett 9:1798–1805CrossRefGoogle Scholar
  23. 23.
    Choi KY, Jeon EJ, Yoon HY, Lee BS, Na JH, Min KH, Kim SY, Myung S-J, Lee S, Chen X (2012) Theranostic nanoparticles based on PEGylated hyaluronic acid for the diagnosis, therapy and monitoring of colon cancer. Biomaterials 33:6186–6193CrossRefGoogle Scholar
  24. 24.
    El-Deeb NM, El-Sherbiny IM, El-Aassara MR, Hafez EE (2015) Novel trend in colon cancer therapy using silver nanoparticles synthesized by honey bee. J Nanomed Nanotechnol 6:2Google Scholar
  25. 25.
    Oyewumi MO, Yokel RA, Jay M, Coakley T, Mumper RJ (2004) Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J Control Release 95:613–626CrossRefGoogle Scholar
  26. 26.
    Reynolds CH, Annan N, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA (2000) Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging. J Am Chem Soc 122:8940–8945CrossRefGoogle Scholar
  27. 27.
    Oostendorp M, Douma K, Hackeng TM, Post MJ, van Zandvoort MA, Backes WH (2010) Gadolinium-labeled quantum dots for molecular magnetic resonance imaging: R1 versus R2 mapping. Magn Reson Med 64:291–298CrossRefGoogle Scholar
  28. 28.
    Phillips MA, Gran ML, Peppas NA (2010) Targeted nanodelivery of drugs and diagnostics. Nano Today 5:143–159CrossRefGoogle Scholar
  29. 29.
    Bhise S, Nalawade AD, Wadhawa H (2004) Role of protein tyrosine kinase inhibitors in cancer therapeutics. Indian J Biochem Biophys 41(6):273–280PubMedGoogle Scholar
  30. 30.
    Roskoski R (2005) Structure and regulation of Kit protein-tyrosine kinase—the stem cell factor receptor. Biochem Biophys Res Commun 338:1307–1315CrossRefGoogle Scholar
  31. 31.
    Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225CrossRefGoogle Scholar
  32. 32.
    Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, Muders M, Wang S, Buhrow SA, Safgren SL (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978CrossRefGoogle Scholar
  33. 33.
    Knight MW, Halas NJ (2008) Nanoshells to nanoeggs to nanocups: optical properties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit. New J Phys 10:105006CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Suvani Subhadarshini
    • 1
  • Neha Merchant
    • 2
  • Ganji Seeta Rama Raju
    • 1
    Email author
  1. 1.Department of Energy and Materials EngineeringDongguk UniversitySeoulRepublic of Korea
  2. 2.Department of Hematology and Medical Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA

Personalised recommendations