EGFR and FGFR in Growth and Metastasis of Colorectal Cancer

  • Begum Dariya
  • Neha Merchant
  • Sheik Aliya
  • Afroz Alam
  • Ganji Purnachandra NagarajuEmail author


Colorectal cancer (CRC) is the most important cause of tumor-related fatalities around the world, and its distant metastasis is responsible for 40% of mortalities in the USA as well as around the world. CRC is not a single disease; it is rather an assortment of multiple cancers. Metastatic CRC develops from the relapse period after the therapy, where the cancer cells develop resistance. Due to the heterogeneous biology, clear descriptive study at molecular level about the mechanisms, which takes place during CRC invasion and proliferation, is necessary. These studies can help understand the factors affecting the increased risk of CRC progression and help deduce novel therapeutic strategies. This chapter includes the mechanism of EGFR and FGFR in CRC, which are common targets for therapy since they induce cell proliferation and cell division and inhibit apoptosis. Their overexpression in CRC is associated with metastasis including invasion and angiogenesis.


CRC EGFR FGFR FGF EGF Tyrosine kinase 


  1. 1.
    Carraway IIIKL, Cantley LC (1994) A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell 78(1):5–8PubMedCrossRefGoogle Scholar
  2. 2.
    van der Geer P, Hunter T, Lindberg RA (1994) Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 10(1):251–337PubMedCrossRefGoogle Scholar
  3. 3.
    Aqeilan RI, Donati V, Palamarchuk A, Trapasso F, Kaou M, Pekarsky Y, Sudol M, Croce CM (2005) WW domain–containing proteins, WWOX and YAP, compete for interaction with ErbB-4 and modulate its transcriptional function. Cancer Res 65(15):6764–6772PubMedCrossRefGoogle Scholar
  4. 4.
    Fallon L, Bélanger CM, Corera AT, Kontogiannea M, Regan-Klapisz E, Moreau F, Voortman J, Haber M, Rouleau G, Thorarinsdottir T (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI (3) K–Akt signalling. Nat Cell Biol 8(8):834PubMedCrossRefGoogle Scholar
  5. 5.
    Levkowitz G, Waterman H, Zamir E, Kam Z, Oved S, Langdon WY, Beguinot L, Geiger B, Yarden Y (1998) c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev 12(23):3663–3674PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Reddi H (2013) Mutations in the EGFR pathway: clinical utility and testing strategies. Clin Lab News 39:14–16Google Scholar
  7. 7.
    Chen J, Guo F, Shi X, Zhang L, Zhang A, Jin H, He Y (2014) BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer 14(1):802PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam A, Lee J, Yarden Y, Libermann TA, Schlessinger J (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309(5967):418PubMedCrossRefGoogle Scholar
  9. 9.
    Carpenter G, Lloyd K Jr, Cohen S (1978) Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 276(5686):409PubMedCrossRefGoogle Scholar
  10. 10.
    Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255(18):8363–8365PubMedGoogle Scholar
  11. 11.
    Harel A, Forbes DJ (2004) Importin beta: conducting a much larger cellular symphony. Mol Cell 16(3):319–330PubMedGoogle Scholar
  12. 12.
    Wang Y-N, Wang H, Yamaguchi H, Lee H-J, Lee H-H, Hung M-C (2010) COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun 399(4):498–504PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Radinsky R, Risin S, Fan D, Dong Z, Bielenberg D, Bucana CD, Fidler IJ (1995) Level and function of epidermal growth factor receptor predict the metastatic potential of human colon carcinoma cells. Clin Cancer Res 1(1):19–31PubMedGoogle Scholar
  14. 14.
    Karameris A, Kanavaros P, Aninos D, Gorgoulis V, Mikou G, Rokas T, Niotis M, Kalogeropoulos N (1993) Expression of Epidermal Growth Factor (EGF) and Epidermal Growth Factor Receptor (EGFR) in Gastric and Colorectal Carcinomas1: an immunohistological study of 63 cases. Pathol-Res Pract 189(2):133–137PubMedCrossRefGoogle Scholar
  15. 15.
    Radinsky R (1995) Modulation of tumor cell gene expression and phenotype by the organ specific metastatic environment. Cancer Metastasis Rev 14(4):323–338PubMedCrossRefGoogle Scholar
  16. 16.
    Spano J-P, Lagorce C, Atlan D, Milano G, Domont J, Benamouzig R, Attar A, Benichou J, Martin A, Morere J-F (2005) Impact of EGFR expression on colorectal cancer patient prognosis and survival. Ann Oncol 16(1):102–108PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Blanchot-Jossic F, Jarry A, Masson D, Bach-Ngohou K, Paineau J, Denis MG, Laboisse CL, Mosnier JF (2005) Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells. J Pathol 207(2):156–163PubMedCrossRefGoogle Scholar
  18. 18.
    Itoh N, Ohta H (2013) Roles of FGF20 in dopaminergic neurons and Parkinson’s disease. Front Mol Neurosci 6:15PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson JD, Murison JG (2001) Identification of a new fibroblast growth factor receptor, FGFR5. Gene 271(2):171–182PubMedCrossRefGoogle Scholar
  20. 20.
    Silva PN, Altamentova SM, Kilkenny DM, Rocheleau JV (2013) Fibroblast growth factor receptor like-1 (FGFRL1) interacts with SHP-1 phosphatase at insulin secretory granules and induces beta-cell ERK1/2 protein activation. J Biol Chem 288(24):17859–17870PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8(3):235PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Johnson DE, Williams LT (1992) Structural and functional diversity in the FGF receptor multigene family. Edition ed. Advances in cancer research. Elsevier, Burlington, pp 1–41Google Scholar
  23. 23.
    Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Receptor specificity of the fibroblast growth factor family the complete mammalian fgf family. J Biol Chem 281(23):15694–15700PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Wu X, Ge H, Lemon B, Weiszmann J, Gupte J, Hawkins N, Li X, Tang J, Lindberg R, Li Y (2009) Selective activation of FGFR4 by an FGF19 variant does not improve glucose metabolism in ob/ob mice. Proc Natl Acad Sci 106(34):14379–14384PubMedCrossRefGoogle Scholar
  25. 25.
    Wu X, Ge H, Lemon B, Vonderfecht S, Weiszmann J, Hecht R, Gupte J, Hager T, Wang Z, Lindberg R (2010) FGF19-induced hepatocyte proliferation is mediated through FGFR4 activation. J Biol Chem 285(8):5165–5170PubMedCrossRefGoogle Scholar
  26. 26.
    Gonzalez AM, Hill DJ, Logan A, Maher PA, Baird A (1996) Distribution of fibroblast growth factor (FGF)-2 and FGF receptor-1 messenger RNA expression and protein presence in the mid-trimester human fetus. Pediatr Res 39(3):375PubMedCrossRefGoogle Scholar
  27. 27.
    Kirikoshi H, Sagara N, Saitoh T, Tanaka K, Sekihara H, Shiokawa K, Katoh M (2000) Molecular cloning and characterization of human FGF-20 on chromosome 8p21. 3-p22. Biochem Biophys Res Commun 274(2):337–343PubMedCrossRefGoogle Scholar
  28. 28.
    Jeffers M, McDonald WF, Chillakuru RA, Yang M, Nakase H, Deegler LL, Sylander ED, Rittman B, Bendele A, Sartor RB (2002) A novel human fibroblast growth factor treats experimental intestinal inflammation. Gastroenterology 123(4):1151–1162PubMedCrossRefGoogle Scholar
  29. 29.
    Visco V, Belleudi F, Marchese C, Leone L, Aimati L, Cardinali G, Kovacs D, Frati L, Torrisi MR (2004) Differential response to keratinocyte growth factor receptor and epidermal growth factor receptor ligands of proliferating and differentiating intestinal epithelial cells. J Cell Physiol 200(1):31–44PubMedCrossRefGoogle Scholar
  30. 30.
    Jang J-H, Shin K-H, Park Y-J, Lee RJ, McKeehan WL, Park J-G (2000) Novel transcripts of fibroblast growth factor receptor 3 reveal aberrant splicing and activation of cryptic splice sequences in colorectal cancer. Cancer Res 60(15):4049–4052PubMedGoogle Scholar
  31. 31.
    Sato T, Oshima T, Yoshihara K, Yamamoto N, Yamada R, Nagano Y, Fujii S, Kunisaki C, Shiozawa M, Akaike M (2009) Overexpression of the fibroblast growth factor receptor-1 gene correlates with liver metastasis in colorectal cancer. Oncol Rep 21(1):211–216PubMedGoogle Scholar
  32. 32.
    Takaishi S, Sawada M, Morita Y, Seno H, Fukuzawa H, Chiba T (2000) Identification of a novel alternative splicing of human FGF receptor 4: soluble-form splice variant expressed in human gastrointestinal epithelial cells. Biochem Biophys Res Commun 267(2):658–662PubMedCrossRefGoogle Scholar
  33. 33.
    Desnoyers L, Pai R, Ferrando R, Hötzel K, Le T, Ross J, Carano R, D’souza A, Qing J, Mohtashemi I (2008) Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene 27(1):85PubMedCrossRefGoogle Scholar
  34. 34.
    Jang J-H (2005) Reciprocal relationship in gene expression between FGFR1 and FGFR3: implication for tumorigenesis. Oncogene 24(5):945PubMedCrossRefGoogle Scholar
  35. 35.
    Elenius K, Corfas G, Paul S, Choi CJ, Rio C, Plowman GD, Klagsbrun MA (1997) Novel juxtamembrane domain isoform of HER4/ErbB4 isoform-specific tissue distribution and differential processing in response to phorbol ester. J Biol Chem 272(42):26761–26768PubMedCrossRefGoogle Scholar
  36. 36.
    Komuro A, Nagai M, Navin NE, Sudol M (2003) WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem 278(35):33334–33341PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Spano J, Fagard R, Soria J-C, Rixe O, Khayat D, Milano G (2005) Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol 16(2):189–194PubMedCrossRefGoogle Scholar
  38. 38.
    Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237(1):18–27PubMedCrossRefGoogle Scholar
  39. 39.
    Lindner V, Majack R, Reidy M (1990) Basic fibroblast growth factor stimulates endothelial regrowth and proliferation in denuded arteries. J Clin Invest 85(6):2004–2008PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Halaban R (1996) Growth factors and melanomas. Semin Oncol 10:673–681Google Scholar
  41. 41.
    Bian X-W, Du L-L, Shi J-Q, Cheng Y-S, Liu F-X (2000) Correlation of bFGF, FGFR-1 and VEGF expression with vascularity and malignancy of human astrocytomas. Anal Quant Cytol Histol 22(3):267–274PubMedGoogle Scholar
  42. 42.
    Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, Moghaddam A, Whitehouse R, Bicknell R, Harris AL (1997) Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res 57(5):963–969PubMedGoogle Scholar
  43. 43.
    Yamanaka Y, Friess H, Buchler M, Beger HG, Uchida E, Onda M, Kobrin MS, Korc M (1993) Overexpression of acidic and basic fibroblast growth factors in human pancreatic cancer correlates with advanced tumor stage. Cancer Res 53(21):5289–5296PubMedGoogle Scholar
  44. 44.
    Berger W, Setinek U, Mohr T, Kindas-Mügge I, Vetterlein M, Dekan G, Eckersberger F, Caldas C, Micksche M (1999) Evidence for a role of FGF-2 and FGF receptors in the proliferation of non-small cell lung cancer cells. Int J Cancer 83(3):415–423PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Gazzaniga P, Gandini O, Gradilone A, Silvestri I, Giuliani L, Magnanti M, Gallucci M, Saccani G, Frati L, Agliano A (1999) Detection of basic fibroblast growth factor mRNA in urinary bladder cancer: correlation with local relapses. Int J Oncol 14(6):1123–1130PubMedGoogle Scholar
  46. 46.
    Dellacono FR, Spiro J, Eisma R, Kreutzer D (1997) Expression of basic fibroblast growth factor and its receptors by head and neck squamous carcinoma tumor and vascular endothelial cells. Am J Surg 174(5):540–544PubMedCrossRefGoogle Scholar
  47. 47.
    Huang X, Yu C, Jin C, Yang C, Xie R, Cao D, Wang F, McKeehan WL (2006) Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog 45(12):934–942PubMedCrossRefGoogle Scholar
  48. 48.
    Ramos C, Becerril C, Montaño M, García-De-Alba C, Ramírez R, Checa M, Pardo A, Selman M (2010) FGF-1 reverts epithelial-mesenchymal transition induced by TGF-β1 through MAPK/ERK kinase pathway. Am J Phys Lung Cell Mol Phys 299(2):L222–LL31Google Scholar
  49. 49.
    Jouanneau J, Plouet J, Moens G, Thiery JP (1997) FGF-2 and FGF-1 expressed in rat bladder carcinoma cells have similar angiogenic potential but different tumorigenic properties in vivo. Oncogene 14(6):671PubMedCrossRefGoogle Scholar
  50. 50.
    Kwabi-Addo B, Ozen M, Ittmann M (2004) The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer 11(4):709–724PubMedCrossRefGoogle Scholar
  51. 51.
    Takahashi JA, Fukumoto M, Igarashi K, Oda Y, Kikuchi H, Hatanaka M (1992) Correlation of basic fibroblast growth factor expression levels with the degree of malignancy and vascularity in human gliomas. J Neurosurg 76(5):792–798PubMedCrossRefGoogle Scholar
  52. 52.
    Nakao Y, Mitsuyasu T, Kawano S, Nakamura N, Kanda S, Nakamura S (2013) Fibroblast growth factors 7 and 10 are involved in ameloblastoma proliferation via the mitogen-activated protein kinase pathway. Int J Oncol 43(5):1377–1384PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Matsuda Y, Ueda J, Ishiwata T (2012) Fibroblast growth factor receptor 2: expression, roles, and potential as a novel molecular target for colorectal cancer. Pathol Res Int 2012:574768CrossRefGoogle Scholar
  54. 54.
    Liu R, Huang S, Lei Y, Zhang T, Wang K, Liu B, Nice EC, Xiang R, Xie K, Li J (2015) FGF8 promotes colorectal cancer growth and metastasis by activating YAP1. Oncotarget 6(2):935PubMedGoogle Scholar
  55. 55.
    Sun C, Fukui H, Hara K, Zhang X, Kitayama Y, Eda H, Tomita T, Oshima T, Kikuchi S, Watari J (2015) FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells. BMC Cancer 15(1):333PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Okada T, Murata K, Hirose R, Matsuda C, Komatsu T, Ikekita M, Nakawatari M, Nakayama F, Wakatsuki M, Ohno T (2013) Upregulated expression of FGF13/FHF2 mediates resistance to platinum drugs in cervical cancer cells. Sci Rep 3:2899PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Basu M, Mukhopadhyay S, Chatterjee U, Roy SS (2014) FGF16 promotes invasive behavior of SKOV-3 ovarian cancer cells through activation of mitogen-activated protein kinase (MAPK) signaling pathway. J Biol Chem 289(3):1415–1428PubMedCrossRefGoogle Scholar
  58. 58.
    Jarosz M, Robbez-Masson L, Chioni A-M, Cross B, Rosewell I, Grose R (2012) Fibroblast growth factor 22 is not essential for skin development and repair but plays a role in tumorigenesis. PLoS One 7(6):e39436PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366(1):2–16PubMedCrossRefGoogle Scholar
  60. 60.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2(2):127PubMedCrossRefGoogle Scholar
  61. 61.
    Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE (1998) ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol 18(9):5042–5051PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Schlessinger J, Lemmon MA (2006) Nuclear signaling by receptor tyrosine kinases: the first robin of spring. Cell 127(1):45–48PubMedCrossRefGoogle Scholar
  63. 63.
    Ni C-Y, Murphy MP, Golde TE, Carpenter G (2001) γ-Secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294(5549):2179–2181PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149PubMedCrossRefGoogle Scholar
  65. 65.
    Schlessinger J (2004) Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 306(5701):1506–1507PubMedCrossRefGoogle Scholar
  66. 66.
    Moosa S, Wollnik B (2016) Altered FGF signalling in congenital craniofacial and skeletal disorders. Sem Cell Dev Biol: Elsevier 53:115–125CrossRefGoogle Scholar
  67. 67.
    Batzer A, Rotin D, Urena J, Skolnik E, Schlessinger J (1994) Hierarchy of binding sites for Grb2 and Shc on the epidermal growth factor receptor. Mol Cell Biol 14(8):5192–5201PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lowenstein E, Daly R, Batzer A, Li W, Margolis B, Lammers R, Ullrich A, Skolnik E, Bar-Sagi D, Schlessinger J (1992) The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell 70(3):431–442PubMedCrossRefGoogle Scholar
  69. 69.
    Hallberg B, Rayter SI, Downward J (1994) Interaction of Ras and Raf in intact mammalian cells upon extracellular stimulation. J Biol Chem 269(6):3913–3916PubMedGoogle Scholar
  70. 70.
    Nandan MO, Yang VW (2011) An update on the biology of RAS/RAF mutations in colorectal cancer. Curr Color Cancer Rep 7(2):113–120CrossRefGoogle Scholar
  71. 71.
    Ubeda M, Vallejo M, Habener JF (1999) CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. Mol Cell Biol 19(11):7589–7599PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Carpenter C, Duckworth B, Auger K, Cohen B, Schaffhausen B, Cantley L (1990) Purification and characterization of phosphoinositide 3-kinase from rat liver. J Biol Chem 265(32):19704–19711PubMedGoogle Scholar
  73. 73.
    Schulze WX, Deng L, Mann M (2005) Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol 1(1):42–55CrossRefGoogle Scholar
  74. 74.
    Courtney KD, Corcoran RB, Engelman JA (2010) The PI3K pathway as drug target in human cancer. J Clin Oncol 28(6):1075PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Mattoon DR, Lamothe B, Lax I, Schlessinger J (2004) The docking protein Gab1 is the primary mediator of EGF-stimulated activation of the PI-3K/Akt cell survival pathway. BMC Biol 2(1):24PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shaw RJ, Cantley LC, Ras PI (2006) (3) K and mTOR signalling controls tumour cell growth. Nature 441(7092):424PubMedCrossRefGoogle Scholar
  77. 77.
    Chattopadhyay A, Vecchi M, Ji Q-S, Mernaugh R, Carpenter G (1999) The role of individual SH2 domains in mediating association of phospholipase C-γ1 with the activated EGF receptor. J Biol Chem 274(37):26091–26097PubMedCrossRefGoogle Scholar
  78. 78.
    Bromberg J (2002) Stat proteins and oncogenesis. J Clin Invest 109(9):1139–1142PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Eguchi S, Numaguchi K, Iwasaki H, Matsumoto T, Yamakawa T, Utsunomiya H, Motley ED, Kawakatsu H, Owada KM, Hirata Y (1998) Calcium-dependent epidermal growth factor receptor transactivation mediates the angiotensin II-induced mitogen-activated protein kinase activation in vascular smooth muscle cells. J Biol Chem 273(15):8890–8896PubMedCrossRefGoogle Scholar
  80. 80.
    Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402(6764):884PubMedCrossRefGoogle Scholar
  81. 81.
    Gschwind A, Zwick E, Prenzel N, Leserer M, Ullrich A (2001) Cell communication networks: epidermal growth factor receptor transactivation as the paradigm for interreceptor signal transmission. Oncogene 20(13):1594PubMedCrossRefGoogle Scholar
  82. 82.
    Gschwind A, Prenzel N, Ullrich A (2002) Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res 62(21):6329–6336PubMedGoogle Scholar
  83. 83.
    Carpenter G (2000) EGF receptor transactivation mediated by the proteolytic production of EGF-like agonists. Sci STKE 2000(15):pe1–peGoogle Scholar
  84. 84.
    Huang F, Goh LK, Sorkin A (2007) EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci 104(43):16904–16909PubMedCrossRefGoogle Scholar
  85. 85.
    Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, Waterman H, Sela M, van Zoelen EJ, Yarden Y (1998) Differential endocytic routing of homo-and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J 17(12):3385–3397PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767PubMedCrossRefGoogle Scholar
  87. 87.
    Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18(1):197PubMedCentralCrossRefPubMedGoogle Scholar
  88. 88.
    Ogino S, Goel A (2008) Molecular classification and correlates in colorectal cancer. J Mol Diagn 10(1):13–27PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Domingo E, Ramamoorthy R, Oukrif D, Rosmarin D, Presz M, Wang H, Pulker H, Lockstone H, Hveem T, Cranston T (2013) Use of multivariate analysis to suggest a new molecular classification of colorectal cancer. J Pathol 229(3):441–448PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138(6):2073–2087 e3PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Barresi V, Castorina S, Musso N, Capizzi C, Luca T, Privitera G, Condorelli DF (2017) Chromosomal instability analysis and regional tumor heterogeneity in colon cancer. Cancer Genet 210:9–21PubMedCrossRefGoogle Scholar
  92. 92.
    Pino MS, Chung DC (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138(6):2059–2072PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Grady WM (2004) Genomic instability and colon cancer. Cancer Metastasis Rev 23(1–2):11–27PubMedCrossRefGoogle Scholar
  94. 94.
    Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432(7015):338PubMedCrossRefGoogle Scholar
  95. 95.
    Smith G, Carey FA, Beattie J, Wilkie MJ, Lightfoot TJ, Coxhead J, Garner RC, Steele RJ, Wolf CR (2002) Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc Natl Acad Sci 99(14):9433–9438PubMedCrossRefGoogle Scholar
  96. 96.
    Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433PubMedCrossRefGoogle Scholar
  97. 97.
    Leslie A, Carey F, Pratt N, Steele R (2002) The colorectal adenoma–carcinoma sequence. Br J Surg 89(7):845–860PubMedCrossRefGoogle Scholar
  98. 98.
    Worthley DL, Leggett BA (2010) Colorectal cancer: molecular features and clinical opportunities. Clin Biochem Rev 31(2):31PubMedPubMedCentralGoogle Scholar
  99. 99.
    Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8(12):686PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Feinberg AP (2004) The epigenetics of cancer etiology. Sem Cancer Biol: Elsevier 14:427–432PubMedCrossRefGoogle Scholar
  101. 101.
    de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, de Goeij AF, de Bruïne AP, Goldbohm RA, van den Brandt PA, Weijenberg MP, van Engeland M (1909) Genetic variants of methyl metabolizing enzymes and epigenetic regulators: associations with promoter CpG island hypermethylation in colorectal cancer. Cancer Epidemiol Prevent Biomark 1055–9965. EPI-09-0289Google Scholar
  102. 102.
    Van Rijnsoever M, Grieu F, Elsaleh H, Joseph D, Iacopetta B (2002) Characterisation of colorectal cancers showing hypermethylation at multiple CpG islands. Gut 51(6):797–802PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, Kang GH, Widschwendter M, Weener D, Buchanan D (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38(7):787PubMedCrossRefGoogle Scholar
  104. 104.
    Ahuja N, Mohan AL, Li Q, Stolker JM, Herman JG, Hamilton SR, Baylin SB, Issa J-PJ (1997) Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res 57(16):3370–3374PubMedGoogle Scholar
  105. 105.
    de Castro-Carpeño J, Belda-Iniesta C, Sáenz EC, Agudo EH, Batlle JF, Barón MG (2008) EGFR and colon cancer: a clinical view. Clin Transl Oncol 10(1):6–13PubMedCrossRefGoogle Scholar
  106. 106.
    Kim HA, Lee RA, Hwang DY, Park SH (2005) The significances of EGFR overexpression in colorectal cancer. J Kor Soc Coloproctol 21(1):36–41Google Scholar
  107. 107.
    Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Engl J Med 350(21):2129–2139PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS (1997) Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 8(12):1197–1206PubMedCrossRefGoogle Scholar
  109. 109.
    Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676):1497–1500PubMedCrossRefGoogle Scholar
  110. 110.
    Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V, Gregorc V, Ligorio C, Cancellieri A, Damiani S (2004) Akt phosphorylation and gefitinib efficacy in patients with advanced non–small-cell lung cancer. J Natl Cancer Inst 96(15):1133–1141PubMedCrossRefGoogle Scholar
  111. 111.
    Nagahara H, Mimori K, Ohta M, Utsunomiya T, Inoue H, Barnard GF, Ohira M, Hirakawa K, Mori M (2005) Somatic mutations of epidermal growth factor receptor in colorectal carcinoma. Clin Cancer Res 11(4):1368–1371PubMedCrossRefGoogle Scholar
  112. 112.
    Oh B-Y, Lee R-A, Chung S-S, Kim KH (2011) Epidermal growth factor receptor mutations in colorectal cancer patients. J Kor Soc Coloproctol 27(3):127–132CrossRefGoogle Scholar
  113. 113.
    Tsuchida N, Ohtsubo E, Ryder T (1982) Nucleotide sequence of the oncogene encoding the p21 transforming protein of Kirsten murine sarcoma virus. Science 217(4563):937–939PubMedCrossRefGoogle Scholar
  114. 114.
    Burmer GC, Loeb LA (1989) Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc Natl Acad Sci 86(7):2403–2407PubMedCrossRefGoogle Scholar
  115. 115.
    Brink M, de Goeij AF, Weijenberg MP, Roemen GM, Lentjes MH, Pachen MM, Smits KM, de Bruïne AP, Goldbohm RA, van den Brandt PA (2003) K-ras oncogene mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 24(4):703–710PubMedCrossRefGoogle Scholar
  116. 116.
    Samowitz WS, Curtin K, Schaffer D, Robertson M, Leppert M, Slattery ML (2000) Relationship of Ki-ras mutations in colon cancers to tumor location, stage, and survival: a population-based study. Cancer Epidemiol Prevent Biomark 9(11):1193–1197Google Scholar
  117. 117.
    Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, Dietrich D, Biesmans B, Bodoky G, Barone C (2009) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 28(3):466–474PubMedCrossRefGoogle Scholar
  118. 118.
    Li W, Qiu T, Zhi W, Shi S, Zou S, Ling Y, Shan L, Ying J, Lu N (2015) Colorectal carcinomas with KRAS codon 12 mutation are associated with more advanced tumor stages. BMC Cancer 15(1):340PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhang S, Yu D (2010) PI (3) king apart PTEN’s role in cancer. Clin Cancer Res 16(17):4325–4330PubMedCrossRefGoogle Scholar
  120. 120.
    Smitha C, Suresh BM, Linu J, Lakshmaiah K, Govind BK, Lokanatha D, Pretesh R (2017) Patterns and the occurrence of KRAS mutations in metastatic colorectal cancers—a study from Indian Regional Cancer Centre. Indian J Surg Oncol 8(4):511–513PubMedCrossRefGoogle Scholar
  121. 121.
    Sithanandam G, Kolch W, Duh F, Rapp U (1990) Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 5(12):1775–1780PubMedGoogle Scholar
  122. 122.
    Sithanandam G, Druck T, Cannizzaro LA, Leuzzi G, Huebner K, Rapp UR (1992) B-raf and a B-raf pseudogene are located on 7q in man. Oncogene 7(4):795–799PubMedGoogle Scholar
  123. 123.
    Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, Wolff RK, Slattery ML (2005) Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res 65(14):6063–6069PubMedCrossRefGoogle Scholar
  124. 124.
    Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418(6901):934PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Domingo E, Laiho P, Ollikainen M, Pinto M, Wang L, French A, Westra J, Frebourg T, Espin E, Armengol M (2004) BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet 41(9):664–668PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Loughrey M, Waring P, Tan A, Trivett M, Kovalenko S, Beshay V, Young M-A, McArthur G, Boussioutas A, Dobrovic A (2007) Incorporation of somatic BRAF mutation testing into an algorithm for the investigation of hereditary non-polyposis colorectal cancer. Familial Cancer 6(3):301–310PubMedCrossRefGoogle Scholar
  127. 127.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W (2002) Mutations of the BRAF gene in human cancer. Nature 417(6892):949PubMedCrossRefGoogle Scholar
  128. 128.
    Loupakis F, Ruzzo A, Cremolini C, Vincenzi B, Salvatore L, Santini D, Masi G, Stasi I, Canestrari E, Rulli E (2009) KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer. Br J Cancer 101(4):715PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11(8):753–762CrossRefGoogle Scholar
  130. 130.
    Dvorak K, Higgins A, Palting J, Cohen M, Brunhoeber P (2017) Immunohistochemistry with Anti-BRAF V600E (VE1) mouse monoclonal antibody is a sensitive method for detection of the BRAF V600E mutation in colon cancer: evaluation of 120 cases with and without KRAS mutation and literature review. Pathol Oncol Res:1–11Google Scholar
  131. 131.
    Bond CE, Liu C, Kawamata F, McKeone DM, Fernando W, Jamieson S, Pearson S-A, Kane A, Woods SL, Lannagan TR (2017) Oncogenic BRAF mutation induces DNA methylation changes in a murine model for human serrated colorectal neoplasia. Epigenetics 13:01–20Google Scholar
  132. 132.
    Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C, Jalaludin B, Segelov E (2004) PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene 23(2):617PubMedCrossRefGoogle Scholar
  133. 133.
    Zhou X-P, Loukola A, Salovaara R, Nystrom-Lahti M, Peltomäki P, De la Chapelle A, Aaltonen LA, Eng C (2002) PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am J Pathol 161(2):439–447PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Goel A, Arnold CN, Niedzwiecki D, Carethers JM, Dowell JM, Wasserman L, Compton C, Mayer RJ, Bertagnolli MM, Boland CR (2004) Frequent inactivation of PTEN by promoter hypermethylation in microsatellite instability-high sporadic colorectal cancers. Cancer Res 64(9):3014–3021PubMedCrossRefGoogle Scholar
  135. 135.
    Jhawer M, Goel S, Wilson AJ, Montagna C, Ling Y-H, Byun D-S, Nasser S, Arango D, Shin J, Klampfer L (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68(6):1953–1961PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Sartore-Bianchi A, Martini M, Molinari F, Veronese S, Nichelatti M, Artale S, Di Nicolantonio F, Saletti P, De Dosso S, Mazzucchelli L (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 69(5):1851–1857PubMedCrossRefGoogle Scholar
  137. 137.
    De Jong KP, Stellema R, Karrenbeld A, Koudstaal J, Gouw AS, Sluiter WJ, Peeters PM, Slooff MJ, De Vries EG (1998) Clinical relevance of transforming growth factor α, epidermal growth factor receptor, p53, and Ki67 in colorectal liver metastases and corresponding primary tumors. Hepatology 28(4):971–979PubMedCrossRefGoogle Scholar
  138. 138.
    Ohgino K, Soejima K, Yasuda H, Hayashi Y, Hamamoto J, Naoki K, Arai D, Ishioka K, Sato T, Terai H (2014) Expression of fibroblast growth factor 9 is associated with poor prognosis in patients with resected non-small cell lung cancer. Lung Cancer 83(1):90–96PubMedCrossRefGoogle Scholar
  139. 139.
    Zammit C, Coope R, Gomm J, Shousha S, Johnston C, Coombes R (2002) Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer. Br J Cancer 86(7):1097PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Acevedo VD, Ittmann M, Spencer DM (2009) Paths of FGFR-driven tumorigenesis. Cell Cycle 8(4):580–588PubMedCrossRefGoogle Scholar
  141. 141.
    Sahlin P, Tarnow P, Martinsson T, Stenman G (2009) Germline mutation in the FGFR3 gene in a TWIST1-negative family with Saethre-Chotzen syndrome and breast cancer. Genes Chromosom Cancer 48(3):285–288PubMedCrossRefGoogle Scholar
  142. 142.
    Tomlinson D, Knowles M, Speirs V (2012) Mechanisms of FGFR3 actions in endocrine resistant breast cancer. Int J Cancer 130(12):2857–2866PubMedCrossRefGoogle Scholar
  143. 143.
    Jang J-H, Shin K-H, Park J-G (2001) Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res 61(9):3541–3543PubMedGoogle Scholar
  144. 144.
    Dutt A, Salvesen HB, Chen T-H, Ramos AH, Onofrio RC, Hatton C, Nicoletti R, Winckler W, Grewal R, Hanna M (2008) Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci 105(25):8713–8717PubMedCrossRefGoogle Scholar
  145. 145.
    Pollock P, Gartside M, Dejeza L, Powell M, Mallon MA, Davies H, Mohammadi M, Futreal P, Stratton M, Trent J (2007) Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26(50):7158PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ye Y, Shi Y, Zhou Y, Du C, Wang C, Zhan H, Zheng B, Cao X, Sun M-H, Fu H (2010) The fibroblast growth factor receptor-4 Arg388 allele is associated with gastric cancer progression. Ann Surg Oncol 17(12):3354–3361PubMedCrossRefGoogle Scholar
  147. 147.
    Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M (1999) Structural basis for FGF receptor dimerization and activation. Cell 98(5):641–650PubMedCrossRefGoogle Scholar
  148. 148.
    Sasaki T, Nakamura T, Rebhun RB, Cheng H, Hale KS, Tsan RZ, Fidler IJ, Langley RR (2008) Modification of the primary tumor microenvironment by transforming growth factor α-epidermal growth factor receptor signaling promotes metastasis in an orthotopic colon cancer model. Am J Pathol 173(1):205–216PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Mendelsohn J (2001) The epidermal growth factor receptor as a target for cancer therapy. Endocr Relat Cancer 8(1):3–9PubMedCrossRefGoogle Scholar
  150. 150.
    Herbst RS (2004) Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol Phys 59(2):S21–SS6CrossRefGoogle Scholar
  151. 151.
    Harris AL (2002) Hypoxia – a key regulatory factor in tumour growth. Nat Rev Cancer 2(1):38–47PubMedCrossRefGoogle Scholar
  152. 152.
    Huo Wu XJ, Cheng X, He Y, Hu L, Wu H, Ye F, Zhao R (2016) Asporin enhances colorectal cancer metastasis through activating the EGFR/src/cortactin signaling pathway. Oncotarget 7(45):73402PubMedPubMedCentralGoogle Scholar
  153. 153.
    Sommers CL, Gelmann EP, Kemler R, Cowin P, Byers SW (1994) Alterations in β-catenin phosphorylation and plakoglobin expression in human breast cancer cells. Cancer Res 54(13):3544–3552PubMedGoogle Scholar
  154. 154.
    Loupakis F, Pollina L, Stasi I, Ruzzo A, Scartozzi M, Santini D, Masi G, Graziano F, Cremolini C, Rulli E (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27(16):2622–2629PubMedCrossRefGoogle Scholar
  155. 155.
    Bazan V, Migliavacca M, Zanna I, Tubiolo C, Grassi N, Latteri M, La Farina M, Albanese I, Dardanoni G, Salerno S (2002) Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype. Ann Oncol 13(9):1438–1446PubMedCrossRefGoogle Scholar
  156. 156.
    Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, Xia D, Xu E, Lai M, Wu Y (2018) Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev 1–15Google Scholar
  157. 157.
    Huang L, Wen C, Yang X, Lou Q, Wang X, Che J, Chen J, Yang Z, Wu X, Huang M (2018) PEAK1, acting as a tumor promoter in colorectal cancer, is regulated by the EGFR/KRas signaling axis and miR-181d. Cell Death Dis 9(3):271PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Lorusso G, Rüegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Sleeman JP, Christofori G, Fodde R, Collard JG, Berx G, Decraene C, Rüegg C (2012) Concepts of metastasis in flux: the stromal progression model. Sem Cancer Biol: Elsevier 22:174–186CrossRefGoogle Scholar
  160. 160.
    Liu R, Li J, Xie K, Zhang T, Lei Y, Chen Y, Zhang L, Huang K, Wang K, Wu H (2013) FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer. Cancer Res 73(19):5926–5935PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Roidl A, Berger H-J, Kumar S, Bange J, Knyazev P, Ullrich A (2009) Resistance to chemotherapy is associated with fibroblast growth factor receptor 4 up-regulation. Clin Cancer Res 15(6):2058–2066PubMedCrossRefGoogle Scholar
  162. 162.
    Bange J, Prechtl D, Cheburkin Y, Specht K, Harbeck N, Schmitt M, Knyazeva T, Müller S, Gärtner S, Sures I (2002) Cancer progression and tumor cell motility are associated with the FGFR4 Arg388 allele. Cancer Res 62(3):840–847PubMedGoogle Scholar
  163. 163.
    Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Sem Cell Dev Biol: Elsevier 19:294–308CrossRefGoogle Scholar
  164. 164.
    Bokemeyer C, Bondarenko I, Hartmann J, De Braud F, Schuch G, Zubel A, Celik I, Schlichting M, Koralewski P (2011) Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 22(7):1535–1546PubMedCrossRefGoogle Scholar
  165. 165.
    Cunningham MP, Essapen S, Thomas H, Green M, Lovell DP, Topham C, Marks C, Modjtahedi H (2005) Coexpression, prognostic significance and predictive value of EGFR, EGFRvIII and phosphorylated EGFR in colorectal cancer. Int J Oncol 27(2):317–325PubMedPubMedCentralGoogle Scholar
  166. 166.
    Corcoran RB, André T, Atreya CE, Schellens JH, Yoshino T, Bendell JC, Hollebecque A, McRee AJ, Siena S, Middleton G (2018) Combined BRAF, EGFR, and MEK inhibition in patients with BRAF V600E-mutant colorectal Cancer. Cancer Discov 8:428–443CrossRefGoogle Scholar
  167. 167.
    Tessitore A, Bruera G, Mastroiaco V, Cannita K, Cortellini A, Cocciolone V, Dal Mas A, Calvisi G, Zazzeroni F, Ficorella C (2018) KRAS and two rare PI3KCA mutations coexisting in a metastatic colorectal cancer patient with aggressive and resistant disease. Hum Pathol 74:178–182PubMedCrossRefGoogle Scholar
  168. 168.
    Fiedler W, Cresta S, Schulze-Bergkamen H, De Dosso S, Weidmann J, Tessari A, Baumeister H, Danielczyk A, Dietrich B, Goletz S (2018) Phase I study of tomuzotuximab, a glycoengineered therapeutic antibody against the epidermal growth factor receptor, in patients with advanced carcinomas. ESMO Open 3(2):e000303PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Matsuda Y, Ishiwata T, Yamahatsu K, Kawahara K, Hagio M, Peng W-X, Yamamoto T, Nakazawa N, Seya T, Ohaki Y (2011) Overexpressed fibroblast growth factor receptor 2 in the invasive front of colorectal cancer: a potential therapeutic target in colorectal cancer. Cancer Lett 309(2):209–219PubMedCrossRefGoogle Scholar
  170. 170.
    Rothe C, Urlinger S, Löhning C, Prassler J, Stark Y, Jäger U, Hubner B, Bardroff M, Pradel I, Boss M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376(4):1182–1200PubMedCrossRefGoogle Scholar
  171. 171.
    Zheng S-J, Zheng S-P, Huang F-Y, Jiao C-L, Wu R-L (2007) Synergistic anti-tumor effect of recombinant chicken fibroblast growth factor receptor-1-mediated anti-angiogenesis and low-dose gemcitabine in a mouse colon adenocarcinoma model. World J Gastroenterol: WJG 13(17):2484PubMedCrossRefGoogle Scholar
  172. 172.
    Chen X, Wang X, Wang Y, Yang L, Hu J, Xiao W, Fu A, Cai L, Li X, Ye X (2010) Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bFGF peptide. J Control Release 145(1):17–25PubMedCrossRefGoogle Scholar
  173. 173.
    Turkington R, Longley D, Allen W, Stevenson L, McLaughlin K, Dunne P, Blayney J, Salto-Tellez M, Van Schaeybroeck S, Johnston P (2014) Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer. Cell Death Dis 5(2):e1046PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran S-E, Heintges T, Lerchenmüller C, Kahl C, Seipelt G (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1065–1075CrossRefGoogle Scholar
  175. 175.
    Lenz H, Niedzwiecki D, Innocenti F, Blanke C, Mahony M, O’Neil B, Shaw J, Polite B, Hochster H, Atkins J (2014) 501O CALGB/SWOG 80405: phase III trial of irinotecan/5-fu/leucovorin (folfiri) or oxaliplatin/5-fu/leucovorin (mfolfox6) with bevacizumab (bv) or cetuximab (cet) for patients (pts) with expanded ras analyses untreated metastatic adenocarcinoma of the colon or rectum (mcrc). Ann Oncol 25(Suppl 4):mdu438 13Google Scholar
  176. 176.
    Riesco-Martinez MC, Sanchez-Torre A, Garcia-Carbonero R (2017) Safety and efficacy of nintedanib for the treatment of metastatic colorectal cancer. Expert Opin Investig Drugs 26(11):1295–1305PubMedCrossRefGoogle Scholar
  177. 177.
    Mori S, Tran V, Nishikawa K, Kaneda T, Hamada Y, Kawaguchi N, Fujita M, Takada YK, Matsuura N, Zhao M (2013) A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis. PLoS One 8(2):e57927PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Crose LE, Etheridge KT, Chen C, Belyea B, Talbot LJ, Bentley RC, Linardic CM (2012) FGFR4 blockade exerts distinct antitumorigenic effects in human embryonal versus alveolar rhabdomyosarcoma. Clin Cancer Res 18(14):3780–3790PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Van Emburgh BO, Arena S, Siravegna G, Lazzari L, Crisafulli G, Corti G, Mussolin B, Baldi F, Buscarino M, Bartolini A (2016) Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat Commun 7:13665PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Begum Dariya
    • 1
  • Neha Merchant
    • 2
  • Sheik Aliya
    • 3
  • Afroz Alam
    • 1
  • Ganji Purnachandra Nagaraju
    • 4
    Email author
  1. 1.Department of Biosciences and BiotechnologyBanasthali UniversityBanasthaliIndia
  2. 2.Department of Hematology and Medical Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA
  3. 3.Department of BiotechnologyJawaharlal Nehru Technical UniversityHyderabadIndia
  4. 4.Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer InstituteEmory UniversityAtlantaUSA

Personalised recommendations